• Title/Summary/Keyword: Leak flow rate

Search Result 70, Processing Time 0.025 seconds

Experimental Investigation on Cracks and Defects of a Valve Sealing Components for a LPG Cylinder (LPG 용기용 밸브의 밀봉부품 크랙 및 결함에 관한 실험적 고찰)

  • Kim, Chung-Kyun;Lee, Byung-Kwan;Kim, Tae-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.1 s.34
    • /
    • pp.23-28
    • /
    • 2007
  • This paper presents an experimental investigation on the sealing defects and cracks of O-rings and a valve packing of a gas valve for a LPG cylinder. O-ring in which stops a gas leakage of a liquefied petroleum gas is very important for a LPG valve safety. Valve packing is to open and close a gas flow port for supplying and charging a LPG fuel. The sealing performance of two sealing units ism related to the leak safety and long lift of a gas valve. The investigated results show that most of O-rings was failed due to a circumferential crack in which is caused by partial press bonding failure near the partition zone and an excess compression rate. Some of the O-ring failure was originated by an extrusion of an excessive leak pressure of a LP gas. Thus, this paper strongly recommends a tight quality control and a safety guarantee system of O-rings and valve packing to guarantee a leak safety and to extend a service lift of a gas valve. At the end, a warranty policy of the sealing units should be adopted for increasing a product quality and safety of a gas valve.

  • PDF

Practical Research for Quantitative Expression of Leakage Through Optical Gas Image (광학가스이미지에서 유출량의 정량표시 실험적 연구)

  • Park, Suri;Han, Sang-wook;Kim, Byung-jick
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.5
    • /
    • pp.16-26
    • /
    • 2017
  • In chemical industry plants, the raw material, intermediate and final products can leak from unstable joints of flanges and valves as well as cracks of storage tanks. From the safety and economic standpoints, it is very important to understand whether leaks or not and leakage rate. The OGI(optical gas image) technique can tell gas leakages, but cannot give the leakage rate. Some special OGI devices can show the kind of gas in different color concentration in different darkness. Therefore the research on quantification of OGI is necessary. In this research, we have developed the practical method to quantify OGI of methane leakage. To estimate 3-dimensional gas leakages distribution from 2-dimensional OGI, the Monte Carlo Probability technique was applied. First the number of points in the area of width(2.54 cm) and length(2.54 cm) in OGI was counted. Total no of each experiment was compared with the measured flow rate. The correlation average between total points and measured flow rate was found to be 0.980. Reversely we estimated the leakage rate of OGI by use of the correlation table. The results showed good agreement between the estimation value and the measured value.

Development of leakage detection model in water distribution networks applying LSTM-based deep learning algorithm (LSTM 기반 딥러닝 알고리즘을 적용한 상수도시스템 누수인지 모델 개발)

  • Lee, Chan Wook;Yoo, Do Guen
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.8
    • /
    • pp.599-606
    • /
    • 2021
  • Water Distribution Networks, one of the social infrastructures buried underground, has the function of transporting and supplying purified water to customers. In recent years, as measurement capability is improved, a number of studies related to leak recognition and detection by applying a deep learning technique based on flow rate data have been conducted. In this study, a cognitive model for leak occurrence was developed using an LSTM-based deep learning algorithm that has not been applied to the waterworks field until now. The model was verified based on the assumed data, and it was found that all cases of leaks of 2% or more can be recognized. In the future, based on the proposed model, it is believed that more precise results can be derived in the prediction of flow data.

The Evaluation of Hydrogen Leakage Safety for the High Pressure Hydrogen System of Fuel Cell Vehicle (연료전지자동차의 고압수소저장시스템 수소 누출 안전성 평가)

  • Kim, Hyun-Ki;Choi, Young-Min;Kim, Sang-Hyun;Shim, Ji-Hyun;Hwang, In-Chul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.4
    • /
    • pp.316-322
    • /
    • 2012
  • A fuel cell vehicle has the hydrogen detection sensors for checking the hydrogen leakage because it use hydrogen for its fuel and can't use a odorant to protect the fuel cell stack. To verify the hydrogen safety of leakage we select the high possible leak points of fittings in hydrogen storage system and test the leaking behavior at them. The hydrogen leakage flow rate is 10, 40, 118 NL/min and the criterion for maximum hydrogen leakage is based on allowing an equivalent release of combustion energy as permitted by gasoline vehicles in FMVSS301. There are total 18EA hydrogen leakage detection sensors installed in test system. we acquire the hydrogen leakage detection time and determine the ranking. Hydrogen leakage detection time decrease when hydrogen leakage flow rate increase. The minimum hydrogen leakage detection time is about 3 seconds when the flow rate is 118NL/min. In this study, we optimize hydrogen sensor position in fuel cell vehicle and verify the hydrogen leakage safety because there is no inflow inside the vehicle.

A Study on the Release Rate of Hazardous Materials from Liquid Pipeline (액체배관으로부터 위험물질 누출속도 산정에 관한 연구)

  • Tak Song-Su;Jo Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.6 no.1 s.17
    • /
    • pp.81-85
    • /
    • 2002
  • This paper presents the calculation methods of liquid release rate in the transition region when hazardous materials leak from the pipeline due to an unwanted accident. For the laminar and turbulent flow region, liquid release rate from a pipeline can be calculated by using a commercial software or by using calculator based on the models(equations) suggested by Crowl and Louvar et al. However, there has been no corresponding model for the transition flow region. In this paper. we showed that the turbulent model may be used as an equation generally used in the transition region for conservative hazard analysis if safety factor $30\%$ is added to the value calculated by the turbulent model. In this regard, we first calculated the release rate from liquid pipeline in the transition region by using experimental data on Fanning friction factor depending on Reynolds number which Lap-Mou Tam et al. had introduced, then compared it with that of the laminar and turbulent models in transition region.

  • PDF

Development of a Housing Component for an Auto-compressor Using Vacuum Ladling Die Casting (진공급탕식 다이캐스팅법을 이용한 자동차 콤프레서용 하우징 부품 개발)

  • Lee, H.S.;Park, J.S.
    • Transactions of Materials Processing
    • /
    • v.21 no.3
    • /
    • pp.195-201
    • /
    • 2012
  • A vacuum ladling die casting system is suggested as a means to obtain a high vacuum level. A high vacuum of 17.8 mmHg is obtained by sealing the inner space of the mould. The sample product is a rear-head housing for an auto-compressor, and the die-casting with 6-cavities was conducted. The flow analysis shows that the filling speed during vacuum ladling is faster than for a non-vacuum system. The air holes in the sample product were too small to be seen with the naked eye in X-ray films. Density tests show that the high vacuum ladling system reduces the internal porosity as much as 57.8% when compared to the non-vacuum system. A defective rate of only 0.17% was found from leak testing. The results of this research prove that the high vacuum die-casting process is useful for manufacturing of aluminium components under high internal pressure.

파쇄 폐타이어를 이용한 반응벽체에 관한 연구: 폐타이어 내의 MTBE(Methyl tertiary Butyl Ether) 흡착 중심

  • 박상현;이재영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.176-179
    • /
    • 2003
  • Fuel oxygenates, such as Methyl tertiary Butyl Ether (MTBE) is additive in gasoline used to reduce air pollution. Gasoline components and fuel additives can leak form underground storage tanks. MTBE is far more water soluble than gasoline hydrocarbons like BTEX then it travels at essentially the same velocity as groundwater. MTBE in drinking water causes taste and odor problems. Therefore, the purpose of the this study is to examine the ability of ground rubber to sorb MTBE form water. The study consisted of running both batch and column tests to determine the sorption capacity and the flow through utilization efficiency of ground rubber. The result of Column test indicate that ground tire rubber has on the 36% utilization rate. Finally, it is clear that ground rubber present an attractive and relatively inexpensive sorption medium for a MTBE. The Author thought that to determine the economic costs of ground rubber utilization, the cost to sorb a given mass of contaminant by ground rubber will have to be compared to currently accepted sorption media.

  • PDF

A Study on Structural Analysis of Butterfly Valve Components by Pressure Testing of the Industrial Standard (산업용 표준의 압력시험 방법에 의한 버터플라이 밸브 구성품의 구조해석에 관한 연구)

  • Shin, Myung-Seob;Yoon, Joon-Yong;Park, In-Won;Lee, Seoung-Hwan;Park, Han-Yung;Jung, Seung-Hwa
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.3
    • /
    • pp.5-9
    • /
    • 2011
  • Butterfly valves are widely used in current industry to control the fluid flow. They are used for both on-off and throttling applications involving large flows at relatively low pressure-drop especially in large size pipelines. In this study, we carried out the structure analysis of the butterfly valve components according to pressure testing of the industrial standard. the numerical simulation was performed by using ANSYS Workbench. The reliability of valve is evaluated under the investigation of the strain rate, the leak test and the durability of the valve.

The Effect of Turbulence Penetration on the Thermal Stratification Phenomenon Caused by Coolant Leaking in a T-Branch of Square Cross-Section

  • Choi, Young-Don;Hong, Seok-Woo;Park, Min-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.2
    • /
    • pp.51-60
    • /
    • 2003
  • In the nuclear power plant, emergency core coolant system (ECCS) is furnished at reactor coolant system (RCS) in order to cool down high temperature water in case of emergency. However, in this coolant system, thermal stratification phenomenon can occur due to coolant leaking in the check valve. The thermal stratification produces excessive thermal stresses at the pipe wall so as to yield thermal fatigue crack (TFC) accident. In the present study, effects of turbulence penetration on the thermal stratification into T-branches with square cross-section in the modeled ECCS are analysed numerically. Standard k-$\varepsilon$ model is employed to calculate the Reynolds stresses in momentum equations. Results show that the length and strength of thermal stratification are primarily affected by the leak flow rate of coolant and the Reynolds number of duct. Turbulence penetration into the T-branch of ECCS shows two counteracting effects on the thermal stratification. Heat transport by turbulence penetration from main duct to leaking flow region may enhance thermal stratification while the turbulent diffusion may weaken it.

A study on the Development and Evaluation of Sludge Occlusion Reduced Diffuser (폐색 저감형 산기관의 개발 및 적용성 평가)

  • Kim, Young-Hoon;Kim, Kwan-Yeop;Lee, Eui-Jong;Nam, Jong-Woo;Lee, Chang-Ha;Jeon, Min-Jung;Kim, Hyung-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.1
    • /
    • pp.41-49
    • /
    • 2011
  • The diffuser which is conventionally adapted to MBR, has problem that decreasing the cleaning effect of membrane module by inflexible air supply due to the occlusion of sludge from diffuser hole. To solve this problem, diffuser structure of submerged module should be improved to discharge sludge which is flow into the diffuser for prevent occlusion in the diffuser. In this study, the structure of the diffuser was reformed to open lower part for preclusion the blocking. And the outlet diameter of the diffuser was drawn through the condition for the depth of water and air rate, to prevent air-leak condition of improved diffuser. Moreover, application is evaluated by comparing test with occlusion effect of the conventional and improved diffuser. From the results, air-water boundary changes are steady with changes of water depth and it shows linear relation about air rate. By using this linear numerical formula, the height of diffuser's outlet can be decided. Also, it displays that it can prevent the occlusion effect during the comparing test. Hereafter, if this diffuser is applied to practical MBR process, the occlusion problem of diffuser will be disappeared.