• Title/Summary/Keyword: Leaf temperature

Search Result 1,249, Processing Time 0.03 seconds

Effects of Mulberry Leaf Powder on Physicochemical Properties of Bread Dough (뽕잎분말 첨가가 빵반죽의 이화학적 특성에 미치는 영향)

  • Kim, Young-Ho;Cho, Nam-Ji
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.705-713
    • /
    • 2010
  • This study was carried out to investigate the physicochemical properties of bread dough with added mulberry leaf powder. The crude protein, fiber and ash contents of the mulberry leaf powder were 21.25%, 7.70% and 9.27% respectively. The mulberry leaf-mixed powder showed low lightness and redness values and high yellowness. Farinograph water absorption increased as the mulberry leaf powder content increased. Both arrival and development times of the mulberry leaf powder-added dough were longer than those of wheat flour dough. As the mulberry leaf powder content increased, the degree of weakness increased. Maximum viscosity by amylograph analysis increased gradually with the addition of mulberry leaf powder, while gelatinization temperature was not affected. Degree of extension decreased as shown in extensograph analysis with increasing content of mulberry leaf powder.

On the Breeding of Dumbbell Bivoltine Silkworm Breeds of Bombyx mori L. Tolerant to High Temperature and High Humidity Conditions of the Tropics

  • Singh, Harjeet;Kumar, Nair Suresh
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.20 no.2
    • /
    • pp.45-59
    • /
    • 2010
  • It is well established fact that under tropical condition, unlike polyvoltines, bivoltines are more vulnerable to various stresses i.e. hot climatic conditions of tropics, poor leaf quality and improper management during summer which are not conducive for bivoltine rearing. Therefore, attempt has been made in this study to develop promising bivoltine breeds tolerant to high temperature and high humidity conditions of the tropics. In the present study, by utilizing temperature tolerant breeds six breeding lines were made and at every generation the 5th instar larvae were exposed to high temperature and high humidity and the survived ones were back crossed with the breeds moderately tolerant to diseases were made to improve the quantitative traits. From F6 generations, alternate rearing in normal temperature and high temperature were conducted. At the end of F12 generation, it was possible to isolate three dumbbell breeds viz., HH8, HH10 and HH12 with improvement in quantitative traits. The methodologies followed for the development are discussed.

Growth Dynamics of the Surfgrass, Phyllospadix Japonicus on the Southeastern Coast of Korea (한반도 동해남부연안에 자생하는 말잘피, 게바다말의 생장 특성)

  • PARK, JUNG-IM;KIM, JAE HOON;KIM, JONG-HYEOB;KIM, MYUNG SOOK
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.4
    • /
    • pp.548-561
    • /
    • 2019
  • The surfgrass Phyllospadix japonicus is a dominant seagrass species playing critical ecological roles on the eastern coast of Korea. However, few studies have been conducted on the ecological characteristics of this species, generally due to the turbulent water conditions in its habitat. In this study, to examine the growth dynamics of P. japonicus, we investigated monthly changes in morphological characteristics, density, biomass, and leaf productivity as well as changes in the underwater irradiance, water temperature, and water column nutrient concentrations of its habitat from August 2017 to July 2018. Underwater irradiance and water temperature showed clear seasonal changes increasing in spring and summer and decreasing in fall and winter. Nutrient availability fluctuated substantially, but did not display any distinct seasonal trend. Morphological characteristics, shoot density, biomass, and leaf productivities of P. japonicus exhibited significant seasonal variations, increasing in spring and decreasing in fall months. Spadix of P. japonicus occurred from March to August, with the maximum spadix percentage(15.8%) occurred in May 2018. The average leaf productivity of P. japonicus per shoot and area were 2.1 mg sht-1 d-1 and 7.5 g m-2 d-1, respectively. The optimum water temperature for the growth of P. japonicus in this study was between 13-14℃. The productivity of P. japonicus was not correlated with underwater irradiance, water temperature and nutrient concentrations. These results suggest that the study site provide sufficient amount of underwater irradiance, suitable water temperature range and nutrients for the growth of P. japonicus.

Studies on the Growth Characters and Nutrient Uptake Related to Source and Sink by Cool Water Temperature at Reproductive Growth Stage III. Influence of Growth Characters and Nutrient Uptake Related to Panicle by Different Water Temperature and Water Depth (생식생장기 냉수온이 벼의 Source와 Sink 관련형질 및 양분흡수에 관한 연구 III. 관개수온과 수심이 수의 관련제형질 및 양분흡수에 미치는 영향)

  • 최수일
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.2
    • /
    • pp.242-248
    • /
    • 1986
  • To study the effect of cold water irrigation at the reproductive growth stage of rice plants on several growth characters related to source and sink and nutrient uptake, the present experiment was carried out under the different conditions of water temperature and water depth. Deep irrigation with normal temperature water increased culm length, panicle length and panicle exsertion but with cold water resulted adversely. Most sensi-tive response in 5 cm water-depth appeared at reduction division stage and in 20 cm depth at panicle formation stage. Secondary branches and spikelets were increased in number by deep irrigation with normal temperature water, but decreased and degenerated by deep irrigation with cold water at panicle formation stage resulting in high spikelet sterility and low grain filling. Deep irrigation with normal temperature water increased the contents of total nitrogen, phosphate, potassium and silicate in leaf blades, branches and chaff. However, cold water irrigation reduced the uptake of phosphate, potassium and silicate except nitrogen particularly in deep irrigation. Ratios of phosphate, potassium and silicate to total nitrogen content were decreased by cold water irrigation. Branches seemed to have higher requirements for phosphate, potassium and silicate than leaf blades and chaff. Silicate-to-total nitrogen ratio in leaf blades, branches and chaff had significant correlations with yield showing closer relationship between yield and the ratio of silicate to total nitrogen in branches in particu-lar.

  • PDF

Influences of Difference between Day and Night Temperatures (DIF) on Growth and Development of Bell Pepper Plants before and after Transplanting (단고추(피망) 육묘시 주야간 온도차(DIF)가 플러그묘 생장과 정식후 식물의 생육에 미치는 영향)

  • 임기병;손기철;정재동;김종기
    • Journal of Bio-Environment Control
    • /
    • v.6 no.1
    • /
    • pp.15-25
    • /
    • 1997
  • Plug seedlings of bell pepper(Capsicum annuum L.) were grown for 50 days in controlled environment chambers under 12 hrs per day photoperiodic condition with sixteen different day and night temperature regimes to investigate the possibility of height control. The seedlings were then transplanted to greenhouse to investigate the growth, flowering, and yield afterward. Plant height and stem length of seedlings were mainly affected by day temperature rather than night temperature. Internode elongation was suppressed by a negative DIF and was enhanced by a positive DIF even with the same average daily temperature (ADT). Leaf unfolding rate was influenced more by ADT than by DIF. Fresh and dry weights increased as ADT increased. Leaf area and stem diameter increased until temperature increased up to 24$^{\circ}C$ day and night temperature and decreased above 24$^{\circ}C$, The position at which the first flower was initiated was lowered as ADT increased. The first flower degeneration was not obvious up to 24$^{\circ}C$ ADT but increased rapidly above 24$^{\circ}C$ ADT. Seedling compactness(Dry weight per plant height :mg.mm$^{-1}$ ) was greater under -DIF than +DIF condition. In conclusion, DIF treatment was an applicable technique to control stem elongation and growth rate such as leaf unfolding rate and position at which first flower was initiated could be controlled by ADT.

  • PDF

Effect of Cucumber(Cucumis sativus) Growth on Mobile Shading according to Solar Radiation in Greenhouse during Summer (여름철 시설재배에서 일사량에 따른 수시차광이 오이 생육에 미치는 영향)

  • Woo, Y.H.;Cho, I.H.;Lee, K.H.;Hong, K.H.;Oh, D.G.;Kang, I.C.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.16 no.1
    • /
    • pp.67-75
    • /
    • 2014
  • Use of mobile shading helps ameliorate heat stress of cucumber in greenhouse during summer. The mobile shading according to solar radiation may be optimal to produce high-quality cucumber in greenhouse during summer. Simultaneous comparison was made among greenhouse sections that were either not shaded or covered with reflective aluminized shadecloth that shaded 40%, or 90% of direct sunlight. Solar radiation amount, soil temperature, difference in leaf temperature and air temperature, and air temperature were lower, and relative humidity was higher as shade level increased. With increased shade level, photosynthesis rate, leaf area, fresh weight, dry weight, and number of marketable fruits increased. The mobile shading of 90% when the outer sunlight was above 650W·m-2 yielded favorable growth environment in greenhouse of cucumber during summer.

Effect of Growth Temperature and MA Storage on Quality and Storability of Red Romaine Baby Leaves (생육온도와 MA저장이 적로메인 상추 어린잎의 품질과 저장성에 미치는 영향)

  • Choi, Dam Hee;Lee, Joo Hwan;Choi, In-Lee;Kang, Ho-Min
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.3
    • /
    • pp.187-192
    • /
    • 2021
  • This study was conducted to compare the quality of baby leaves grown under several temperature conditions and the storage properties of MA storage for romaine lettuce. It was grown for 5 weeks under an artificial light source (200 µmol·m-2·s-1) in a chamber at 21℃, 28℃, and 35℃. The growth and quality of red romaine lettuce that grown in different temperatures were investigated at the end of cultivation, and the oxygen, carbon dioxide, and ethylene concentrations in the 20,000 cc OTR film and perforated film packed with lettuces were measured for 36 and 12 days, respectively. The red romaine lettuce baby leaf was examined for color, chlorophyll, and visual quality at the end of storage. The maximum quantum yield of baby leaf grown in different temperatures at 7days before the harvest was higher at 21℃ and 28℃ growth temperature treatments. On harvest day, the leaf length measured was longest at 28℃, and the leaf width was wider at 21℃ and 28℃, and the number of leaves was similar to 5-6 at all cultivation temperatures. Leaf weight, root weight, and dry weight were found to be higher at 21℃, and tended to decrease as the cultivation temperature increased. The concentration of ethylene in the film of the MA storage treatments was maintained at 1~2 µL·L-1 until the end of storage in all treatments regardless of the cultivation temperature. Oxygen concentration in the MA treatment used 20,000 OTR film was maintained at around 19.5%, and carbon dioxide concentration around 1% that was satisfied the CA conditions. Both Hunter a* and b* values were generally higher in the MA storage treatment at the end of storage day. The chlorophyll content was decreased as the cultivation temperature increased, and was lower in the MA storage treatment than in the perforated film treatment. Visual quality was 3 points or higher in the MA storage treatment at 21℃ growth treatment, and it was maintained marketability. As the above results, the growth of baby leaves of romaine lettuce was the best at 21℃ treatment, and the lower the cultivation temperature, the longer the shelf life. And it was possible to extend the shelf life by 3 times by showing excellent visual quality at the MA storage treatment that satisfies the carbon dioxide concentration of CA condition until the end of storage day.

Photosynthetic Characteristics and Cellular Tissue of Chinese Cabbage are Affected by Temperature and $CO_{2}C$ Concentration (온도와 $CO_{2}C$ 농도에 따른 배추의 광합성특성 및 세포조직의 변화)

  • Lee, Sang-Gyu;Moon, Ji-Hye;Jang, Yoon-Ah;Lee, Woo-Moon;Cho, Ill-Hwan;Kim, Seung-Yu;Ko, Kwan-Dal
    • Journal of Bio-Environment Control
    • /
    • v.18 no.2
    • /
    • pp.148-152
    • /
    • 2009
  • Numerous studies have presented evidence that global atmospheric carbon dioxide ($CO_{2}$ ) concentration and temperature is increasing every year. Both of the $CO_{2}$ and temperature are important components for photosynthesis activity of plants and thusgrowth and yield. However, little information is available in terms of the reaction of vegetable plants to increased $CO_{2}$ concentration and temperature, and also the reaction to a complex condition of both increased $CO_{2}$ concentration and temperature. The aim of this research was therefore to investigate changes in growth, photosynthetic activity and ultra-cellular structure of leaf tissue of Chinese cabbage. Plants were grown under either of elevated $CO_{2}$ concentration (elevated $CO_{2}$, 2-fold higher than atmospheric $CO_{2}$ ) or elevated temperature (elevated temp, 4$^{\circ}C$ higher than atmospheric temperature), under both of elevated $CO_{2}$ concentration and elevated temperature (elevated temp+$CO_{2}$), and under atmospheric $CO_{2}$ concentration and temperature (control). The treatment of 'elevated temp' negatively affected leaf area, fresh weight, chlorophyll and starch content. However, when the treatment of 'elevated temp' was applied coincidently with the treatment of 'elevated $CO_{2}$', growth and photosynthetic performance of plants were as good as those in the treatment of 'elevated $CO_{2}$', Microscopic study resulted that the highest starch content and density of cells were observed in the leaf tissue grown at the treatment of 'elevated $CO_{2}$', whereas the lowest ones were observed in the leaf tissue grown at the treatment of 'elevated temp'. These results suggest that when Chinese cabbage grows under a high-temperature condition, supplement of $CO_{2}$ would improve the growth and yield. In our knowledge, it is the first time to determine the effect of a complex relationship between the increased $CO_{2}$ concentration and temperature on the growth of Chinese cabbage.

Effects of Temperature, Relative Humidity, and Leaf Wetness Period on the Development of Rice Leaf Blast (잎도열병(稻熱病) 발생(發生)에 미치는 온도(溫度), 상대습도(相對濕度) 및 잎표면상(表面上)의 수분존재시간(水分存在時間)의 영향(影響))

  • Choi, W.J.;Park, E.W.;Lee, E.J.
    • Korean journal of applied entomology
    • /
    • v.26 no.4 s.73
    • /
    • pp.221-228
    • /
    • 1987
  • The optimum temperature range for conidial germination of Pyriculacia oryzae on a slide glass was $26{\sim}30^{\circ}C$, at which at least four hours of leaf wetness period was required to germinate. Conidial germination was significantly reduced under dry conditions (relative humidity<85%) at $34^{\circ}C$ but not at lower temperature (18, 22, 26, $30^{\circ}C$). Number of lesions developed were greater at $26^{\circ}C$ than at other temperature tested. The average leaf wetness period required for production of a lesion per plant was 22 hours at $18^{\circ}C$, 16 hours at $22^{\circ}C$, 10 hours at $26^{\circ}C$, and 8 hours at $30^{\circ}C$. Less than one lesion per plant occurred at $34^{\circ}C$ even under 24 hours of leaf wetness period. The time period between inoculation and lesion appearance was $7{\sim}8$ days at $18^{\circ}C$, $4{\sim}5$ days at $22^{\circ}C$ and $26^{\circ}C$, and $3{\sim}4$ days at $30^{\circ}C$. The time period required for lesion appearance after inoculation was not affected by leaf wetness period and relative humidity. Lesion length increased most rapidly at $30^{\circ}C$ during the first four days after lesion appearance. Thereater, the rate of increase in lesion length was geratest at $26^{\circ}C$. The average increment of lesion length per day when relative humidity was greater than 90% was 0.7mm at $18^{\circ}C\;and\;22^{\circ}C$, 1mm at $26^{\circ}C$, and 0.8mm at $30^{\circ}C$. When relative humidity was less than 85%, the increments of lesion length per day were approximately $50{\sim}60%$ of those under humid conditions (relative humidity>90%) at all temperature regimes except $30^{\circ}C$. Relative humidity did not significantly affected lesion length at $30^{\circ}C$.

  • PDF

Development and Comparison of Growth Regression Model of Dry Weight and Leaf Area According to Growing Days and Accumulative Temperature of Chrysanthemum "Baekma" (국화 "백마"의 생육 일수 및 누적 온도에 따른 건물중과 엽면적의 생장 회귀 모델 개발 및 비교)

  • Kim, Sungjin;Kim, Jeonghwan;Park, Jongseok
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.414-420
    • /
    • 2020
  • This study was carried out to investigate the growth characteristics of standard chrysanthemum 'Baekma', such as fresh weight, dry weight, and leaf area and to develop prediction models for the production greenhouse based on the growth parameters and climatic elements. Sigmoid regressions models for the prediction of growth parameters in terms of dry weight and leaf area were analyzed according to the number of the day after transplanting and the accumulate temperature during this experimental period. The relative growth rate (RGR) of the chrysanthemum was 0.084 g·g-1·d-1 on average during the period.The dry weight and leaf area of 'Beakma' increased exponentially according to the number of day after transplanting and the accumulated temperature, in the case of dry weight increased by an average of 39.1% until 63 days (accumulated temperature of 1601℃), after that dry weight increased by an average of 7.4% before harvest. The leaf area increased by an average of 63.3% until the 28th day after transplanting, and by an average of 6.5% until the 84th day before flower bud differentiation occurred, and increased by an average of 10.6% before harvest. This experiment can be used as a useful data for establishing a cultivation management system and a planned year-round production system for standard chrysanthemum "Baekma". To make a more precise growth prediction model, it will need to be corrected and verified based on various weather data including accumulated irradiation.