DOI QR코드

DOI QR Code

국화 "백마"의 생육 일수 및 누적 온도에 따른 건물중과 엽면적의 생장 회귀 모델 개발 및 비교

Development and Comparison of Growth Regression Model of Dry Weight and Leaf Area According to Growing Days and Accumulative Temperature of Chrysanthemum "Baekma"

  • 김성진 (충남대학교 농업생명과학대학 원예학과 대학원) ;
  • 김정환 (충남대학교 공과대학 컴퓨터공학과 대학원) ;
  • 박종석 (충남대학교 농업생명과학대학 원예학과)
  • Kim, Sungjin (Department of Horticultural Sciences, Chungnam National University) ;
  • Kim, Jeonghwan (Department of Computer Engineering, Chungnam National University) ;
  • Park, Jongseok (Department of Computer Engineering, Chungnam National University)
  • 투고 : 2020.09.02
  • 심사 : 2020.10.06
  • 발행 : 2020.10.31

초록

본 연구는 대륜 국화 '백마'의 생육 특성인 생체중, 건물중, 엽면적을 조사하여, 생장 및 기후요소에 따른 생장 예측모델 개발을 위하여 수행되었다. 정식후 일수 및 누적온도에 따른 국화의 건물중 및 엽면적 분석에 기반한 '백마'의 생장예측을 위한 시그모이드 회귀모델을 개발하였다. '백마'의 건물중 상대생장률(RGR)은 재배기간 평균 0.084 g·g-1·d-1이었다. 정식 후 재배 기간에 따른 건물중에 대한 상대 생장률은 정식 초기부터 단일처리 전까지 높았으며 최고 0.133 g·g-1·d-1까지 증가하였고, 63일째 단일처리가 시작된 후 수확 시기에서는 0.030 g·g-1·d-1으로 감소하는 경향을 보였다. 누적온도에 따른 국화의 건물중, 엽면적에 대한 생장 모델(sigmoid 곡선)을 개발하였다. 정식 후 일수와 누적온도에 따른 '백마'의 건물중 및 엽면적은 지수함수적으로 증가하였으며, 건물중의 경우 63일(누적온도 1601℃)까지 평균 39.1%씩 증가하였고, 이후 평균 7.4%씩 증가하였다. 엽면적의 경우 정식 후 28일차까지 평균 63.3%씩 증가하였고, 화아분화가 발생하기 전인 84일차까지 평균 6.5%씩 증가하였으며 화아 분화가 발생하기 전 84일까지 평균 6.5%로 증가했고, 이후 수확 전까지 평균 10.6%씩 증가하는 경향을 보였다. 본 실험은 충남지역에서 대륜 국화 '백마'의 재배관리 체계와 계획적 연중 생산 체계를 구축하는데 유용한 자료로 활용될 수 있다. 보다 정밀한 생육 예측 모델을 만들기 위해서는 누적 일사량을 포함한 다양한 기상자료를 바탕으로 하여 교정 및 검증이 필요하다.

This study was carried out to investigate the growth characteristics of standard chrysanthemum 'Baekma', such as fresh weight, dry weight, and leaf area and to develop prediction models for the production greenhouse based on the growth parameters and climatic elements. Sigmoid regressions models for the prediction of growth parameters in terms of dry weight and leaf area were analyzed according to the number of the day after transplanting and the accumulate temperature during this experimental period. The relative growth rate (RGR) of the chrysanthemum was 0.084 g·g-1·d-1 on average during the period.The dry weight and leaf area of 'Beakma' increased exponentially according to the number of day after transplanting and the accumulated temperature, in the case of dry weight increased by an average of 39.1% until 63 days (accumulated temperature of 1601℃), after that dry weight increased by an average of 7.4% before harvest. The leaf area increased by an average of 63.3% until the 28th day after transplanting, and by an average of 6.5% until the 84th day before flower bud differentiation occurred, and increased by an average of 10.6% before harvest. This experiment can be used as a useful data for establishing a cultivation management system and a planned year-round production system for standard chrysanthemum "Baekma". To make a more precise growth prediction model, it will need to be corrected and verified based on various weather data including accumulated irradiation.

키워드

참고문헌

  1. Baskerville, G. L. and Emin, P. 1969. Rapid estimation of heat accumulation from maximum and minimum temperatures. Ecology. 50:514-517. https://doi.org/10.2307/1933912
  2. Bloom, A. J. and Troughton, J. H. 1979. High productivity and photosynthetic flexibility in a CAM plant. Oecologia, 38:35-43. https://doi.org/10.1007/BF00347822
  3. Both, A.J., L.D. Albright, R.W. Langhans, R.A. Reiser, and B.G. Vinzant. 1997. Hydroponic lettuce production influenced by integrated supplemental light levels in a controlled environmental facility: Experimental results. Acta Hort. 418:45-51. https://doi.org/10.17660/actahortic.1997.418.5
  4. Bruggink, G. T. and E. Heuvelink. 1987. Influence of light on the growth of young tomato, cucumber and sweet pepper plants in the greenhouse: effects on relative growth rate, net assimilation rate and leaf area ratio. Sci. Hort. 31:161-174.. https://doi.org/10.1016/0304-4238(87)90043-4
  5. Bruggink, G. T. 1992. A comparative analysis of the influence of light on growth of young tomato and carnation plants. Sci. Hort. 51:71-81. https://doi.org/10.1016/0304-4238(92)90105-L
  6. Cha, M.K., J.E. Son., and Y.Y. Cho. 2014a. Growth model of sowthistle (Ixeris dentata Nakai) using expolinear function in a closed-type plant production system. Kor. J. Hort. Sci. Technol. 32:165-170.
  7. Cha, M.K., J.S. Kim., and Y.Y. Cho. 2014b. Growth model of common ice plant (Mesembryanthemum crystallinum L.) using expolinear functions in a closed-type plant production system. Kor. J. Hort. Sci. Technol. 32:493-498.
  8. Challa. H., Heuvelink E., and Van Meeteren U. 1994. Crop growth and development. In: Bakker JC, Bot GPA, Challa H, Ven de Braak, eds. Greenhouse climate control: an integrated approach. Wageningen: Wageningen Press, 62-84.
  9. Charles-Edwards, D. A., K. E. Cockshull, J. S. Horridge, and J. H. M. Thornley, 1979. A model of flowering in Chrysanthemum. Ann. Bot, 44:557-566. https://doi.org/10.1093/oxfordjournals.aob.a085767
  10. Cockshull, K. E. 1982. Disbudding and its effect on dry matter distribution in Chrysanthemum morifolium. J. Hortic. Sci. Biotechnol. 57:205-207. https://doi.org/10.1080/00221589.1982.11515041
  11. Gislerod, H. and P.V. Nelson. 1997. Effect of relative air humidity and irradiance on growth of Dendranthema x grandiflorum (Ramat.) Kitamura. Gartenbauwissenschaft. 62:214-217.
  12. Goudriaan, J. and H.H. Van Laar. 1994. Modelling potential cropgrowth processes: Textbook with exercises. Current issues in production ecology 2. Kluwer Academic Publishers, Dordrecht.
  13. Hoffmann, W.A. and H. Pooter. 2002. Avoiding bias calculations of relative growth rate Ann. Bot. 80:37-42 https://doi.org/10.1093/aob/mcf140
  14. Karlsson, M. G., and R. D. Heins, 1994. A model of chrysanthemum stem elongation. J. Am. Soc. Hortic. Sci. 119:403-407. https://doi.org/10.21273/JASHS.119.3.403
  15. Kempkes, F.L.K. and N.J. Van de Braak. 2000. Heating system position and vertical microclimate distribution in chrysanthemum greenhouse. Agri. For. Meteorol. 104:133-142. https://doi.org/10.1016/S0168-1923(00)00154-4
  16. Kim, B.R., and S.H. Chai. 2016. Policy for vitalizing greenhouse farming. Korea Rural Economic Institute (KREI), Korea.
  17. Kim, S.K., J.H. Lee, H.J. Lee, S.G. Lee, B.H. Mun, S.W. An, and H.S. Lee. 2018. Development of prediction growth and yield models by growing degree days in hot pepper. Protected Hort. Plant Fac. 27:424-430. https://doi.org/10.12791/KSBEC.2018.27.4.424
  18. Kim, Y.H., E.J. Huh, S.Y. Choi, Y.C. Lee, and J.S. Lee. 2009. Effect of high temperature and day length on flower abnormality and delayed flowering of spray chrysanthemum. Kor. J. Hort. Sci. Technol. 27:530-534.
  19. Korner, O. and H. Challa, 2004. Temperature integration and process-based humidity control in chrysanthemum. Comput. Electron. Agric. 43:1-21. https://doi.org/10.1016/j.compag.2003.08.003
  20. Kwon, Y.S., B.S. You, J.A. Jung, S.K. Park, H.K. Shin, and M.J. Kil (2014). Growth and flowering of standard chrysanthemums according to the light source and light quality in night break treatment. Protected Hort. Plant Fac. 23:263-268. https://doi.org/10.12791/KSBEC.2014.23.4.263
  21. Kwon, Y.S., S.Y. Choi, M.J. Kil, B.S. You, J.A. Jung, and S.K. Park. 2013. Effect of night break treatment using red LED (660 nm) on flower bud initiation and growth characteristics of chrysanthemum cv. 'Baekma', and cv. 'Jinba'. Kor. J. Agri. Sci. 40:297-303. https://doi.org/10.7744/cnujas.2013.40.4.297
  22. Larsen, R.U. and L. Persson. 1999. Modelling flower development in greenhouse chrysanthemum cultivars in relation to temperature and response group. Sci. Hort. 80.1-2:73-89. https://doi.org/10.1016/S0304-4238(98)00219-2
  23. Lee, C.H. and M.K. Nam. 2011. Enhancement of stem firmness in standard chrysanthemum 'Baekma' by foliar spray of liquid calcium compounds. Kor. J. Hort. Sci. Technol. 29:298-305.
  24. Lee, C.H. and M.W. Cho. 2011. Control of unseasonable flowering in chrysanthemum 'Baekma' by 2-chloroethylphosphonic acid and night temperature. Kor. J. Hort. Sci. Technol. 29:539-548.
  25. Lee, J. H., E. Heuvelink, and H. Challa, 2002. Simulation study on the interactive effects of radiation and plant density on growth of cut chrysanthemum. Acta Hort. 593.
  26. Lee, S.G., S.K. Kim, H.J. Lee, H.S. Lee, and J.H. Lee. 2018. Impact of moderate and extreme climate change scenarios on growth, morphological features, photosynthesis, and fruit production of hot pepper. Ecology and evolution, 8:197-206. https://doi.org/10.1002/ece3.3647
  27. Li, G., L. Lin, Y. Dong, D. An, Y. Li, W. Luo, X. Yin, W. Li, J. Shao, Y. Zhou, J. Dai, W. Chen, and C. Zhao. 2012. Testing two models for the estimation of leaf stomatal conductance in four greenhouse crops cucumber, chrysanthemum, tulip and lilium. Agr. Forest. 165:92-103. https://doi.org/10.1016/j.agrformet.2012.06.004
  28. Lin, W.C. 2002. Crop modeling and yield prediction for greenhouse grown lettuce. Acta Hort. 593:159-164. https://doi.org/10.17660/ActaHortic.2002.593.20
  29. Ministry of Agriculture, Food, and Rural Affairs (MAFRA). 2019. Present condition of flower production 2018. MAFRA, Gwacheon, Korea.
  30. Mortensen, L.M. 2000. Effects of air humidity on growth, flowering, keeping quality and water relations of four short-day greenhouse species. Scien. Hortic. 86:299-310. https://doi.org/10.1016/S0304-4238(00)00155-2
  31. Nilwik, H.J.M. 1981. Growth analysis of sweet pepper (Capsicum annuum L.). 2. Interacting effects of irradiance, temperature and plant age in controlled conditions. Annals of Botany 48:137-145. https://doi.org/10.1093/oxfordjournals.aob.a086107
  32. Nothnagl, M., A. Kosiba, and R.U. Larsen, 2004. Predicting the effect of irradiance and temperature on the flower diameter of greenhouse grown chrysanthemum. Sci. Hort. 99:319-329. https://doi.org/10.1016/S0304-4238(03)00096-7
  33. Oh, S., K.H. Moon, I.C. Son, E.Y. Song, Y.E. Moon, and S.C. Koh. 2014. Growth, photosysthesis and chlorophyll fluorescence of chinese cabbage in response to high temperature. Kor. J. Hortic. Sci. Technol. 32:318-329.
  34. Park, S.R., I.P. Ahn, D.J. Hwang, A.C. Chang, K.B. Lim, and S.C. Bae. 2013. Current status of ecology and molecular detection in Puccinia horiana. Flower Res. J. 21:128-132. https://doi.org/10.11623/frj.2013.21.3.25
  35. Shin, H.K., J.H. Lim, H.R. Cho, H.K. Lee, M.S. Kim, C.S. Bang, Y.A. Kim, and Y.J. Kim. 2005. A new standard chrysanthemum cultivar, 'Baekma' with large white flower. Korean J. Breed. 37:119-120.
  36. Willits, D. H., P. V. Nelson, M. M. Peet, M. A. Depa, and J. S. Kuehny. 1992. Modeling nutrient uptake in chrysanthemum as a function of growth rate. J. Am. Soc. Hortic. Sci. 117:769-774. https://doi.org/10.21273/JASHS.117.5.769
  37. Yang, Z.Q., W.H. Luo, F.D. Chen, J.J. Gu, X. M. Li, Q. F. Ding, C. B. Zhao, and Y. F. Lu, 2007. Quality prediction model of greenhouse standard cut chrysanthemum based on lighttemperature effect. Chin. J. Appl. Ecol. 18:877-82.
  38. Yoo, Y.K., Y.S. Roh, and B.C. Nam. 2016. Occurrence of white rust and growth of chrysanthemum'Baekma'by control of relative humidity with night ventilation and heating in the greenhouse. Kor. J. Hort. Sci. Technol. 34:845-859.
  39. Yoo, Y.K. and Y.S. Roh. 2015. Effects of shipping temperature and harvesting stage on quality and vase life of cut flowers in Dendranthema grandiflorum 'Baekma' for export. Kor. J. Hort. Sci. Technol. 33:61-69.