• Title/Summary/Keyword: Leaf mass per area

Search Result 20, Processing Time 0.023 seconds

Growth Characteristics of Trees following Different Types of Cutting in Quercus acutissima Stand (상수리나무 임분 내에서 벌채 유형에 따른 조림목의 생장 특성)

  • Shin, Yu-Seung;Song, Sun-Hwa;Yang, A-Ram;Hwang, Jaehong;Park, Yong Mok
    • Journal of Environmental Science International
    • /
    • v.23 no.6
    • /
    • pp.1075-1083
    • /
    • 2014
  • The objective of this study was to evaluate the effect of cutting types on microclimate and growth characteristics of afforested tree in Quercus acutissima stand after different types of cutting. The difference in temperature reaching $5.2^{\circ}C$ was shown in between clear cutting and selective cutting treatments. On July and August days with temperatures more than $35^{\circ}C$ often appeared in clear cutting stand. The values of VPD in July and August were higher than those in other months. Maximum VPD of 3.99 kPa was shown in clear cutting stand on May 23 as a prolonged rainless days appeared. However, VPD in selective cutting stand always stayed under 3.0 kPa throughout growing season. A higher intensity was shown in clear cutting and strip clear cutting stands, reaching to more than $1,600{\mu}mol\;m^{-2}s^{-1}$ at midday on early August, while that in selective cutting stand stayed about 1,500. In relative growth rate selective cutting stand showed a significantly higher relative growth rate in plant height than those in other cutting stands (p<0.05). The number of leaf in current-year branches significantly increased in selective cutting stand, whereas no increase was shown in clear cutting and strip clear cutting stands (p<0.05). In addition, relative elongation rate of current year branch also showed higher values in selective cutting stand compared with that in strip clear cutting stand (p<0.05). However, leaf mass per unit area (LMA) was higher in order of strip clear cutting, clear cutting, and selective cutting stands. From these results it is concluded that environmental conditions in clear cutting and strip clear cutting stands during growing season are more stressful to afforested tree species, resulting in lower relative growth in plant height, elongation of current-year branches, and leaf number per branch compared with those in selective cutting stand. Consequently, more data must be accumulated in the field to find out best cutting type in plantation considering the adaptational characteristic of each tree species varies with species and life span of tree is long.

Turf(Zoysia japonica L.) Quality Enhancement with By-product Gypsum (부산물 석고를 이용한 잔디 품질 개선)

  • Kim, Kye-Hoon;Hong, Sook-Jin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.3
    • /
    • pp.56-63
    • /
    • 2004
  • This study was carried out to find out the effect of by-product gypsum(phosphogypsum, PG) application on enhancement of turf quality. For the first experiment, 10 ton $ha^{-1}$ PG was applied to 1m${\times}$10m (width${\times}$length) Plots with 4 replicates on a sloping area of fairway where turf(Zoysia japonica L.) was grown. Both top- and sub-soil samples were collected before and after treatment and were analyzed for pH, EC(e1ectrica1 conductivity), Ca and Mg contents. At the same time when soil samples were collected, specific color difference sensor value(SCDSV) that represented chlorophyll contents, fresh and dry weight of the turf were determined to find out the effect of PG treatment on turf growth. SCDSV of turf from PG treated plots measured at 98 and 147 days after treatment were significantly higher than those from control. Considering higher fresh and dry weight of leaf per unit area from PG treated plots than that from control, it was concluded that the elevated Ca and S level of the PG treated plots resulted in vigorous leaf growth of turf. For the second experiment 2, 5 and 10 ton $ha^{-1}$ PG were applied to 1m${\times}$10m(width${\times}$length) Plots with 3 replicates at a closer location as was used for the first experiment to find out the appropriate PG application rate. Before and after treatment soil and plant samples were collected and were analyzed by the same way as the first experiment. The pH of all the soil samples collected from PG treated plots at 38 days after treatment was lower than that from control. This trend changed as time passed. However, the pH of the soil from 10 ton $ha^{-1}$ PG treated plot was lower than that from control during the whole period of the second experiment. SCDSV, fresh and dry weight of leaf from PG treated plots at all 3 rates were higher than those from control for the second experiment. PG application to turf will be beneficial for both mass consumption of by-product gypsum and enhancement of turf quality.

Seeding Vigor of Birdsfoot Trefoil Entries Differing in Seed Size (종자 크기가 다른 두 계통의 벌노랑이 유식물의 활력 비교)

  • Hur, S.N.;Nelson, C.J.;Beuselinck, P.R.;Coutts, J.H.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.14 no.3
    • /
    • pp.186-194
    • /
    • 1994
  • Lack of seedling vigor is considered a serious deterrent to use of broadleafed birdsfoot trefoil (Lorus comicul~rus L.). Our objectives were to compare early seedling growth of broadleafed birdsfoot trefoil cultivar "MO-20" and the large-seeded accession 302921 at $15^{\circ}C$ and $25^{\circ}C$. in controlled-environment chambers. Cabon dioxide exchange rate (CER) was measured in a closed or open system using infrared gas analysis. Dark respiration rate was measured manometrically. Net carbon accumulated per day and growth analysis of the seedlings were calculated. Initial seed mass of 302921 was 3.5 times larger and final cotyledon area was 2 times larger than those of MO-20, and early seedling growth was better. But, from 3 weeks after emergence until the end of the test period at $25^{\circ}C$, MO-20 showed higher CER per unit leaf area and faster dry weight accumulation than did 302921. Compared with $25^{\circ}C$, growth of MO-20 at $15^{\circ}C$ was suppressed more than that of 302921. Dark respiration rate of MO-20 was slightly higher than that for 302921, but not COz uptake per day for MO-20 was highest at$25^{\circ}C$ and lowest at $25^{\circ}C$. The relative growth rate (RGR) of MO-20 was higher than 302921 at $25^{\circ}C$ due to high net assimilation rate, but there was little difference in RGR between entries at $15^{\circ}C$.}C$.

  • PDF

Nutrient Use Strategy of Carpinus cordata Saplings Growing under Different Forest Stand Conditions (임분 조건이 다른 환경에서 하층식생으로 생육하는 까치박달(Carpinus cordata) 유목의 양분 이용 특성)

  • Kwon, Boram;Heo, Namjun;Shin, Hoyong;Kim, Hyun Seok;Park, Pil Sun;Yi, Myong Jong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.3
    • /
    • pp.188-196
    • /
    • 2014
  • This study aimed to understand the nutrient absorption, usage and allocation of Carpinus cordata in different soil and light environments. Seasonal changes of foliar nitrogen, phosphorous, chlorophyll contents, leaf mass per area (LMA) and nutrient retranslocation rates were investigated for C. cordata saplings growing in a natural deciduous broadleaved forest and an Manchurian fir (Abies holophylla) plantation in Gwangneung, Kyunggido. The deciduous forest had lower leaf area, higher light penetration, and better soil fertility than the Manchurian fir forest. However, available soil phosphorous content in the deciduous forest was only one third of that in the Manchurian fir forest, which caused lower foliar phosphorous content and higher P retranslocation rate of C. cordata in the deciduous forest than that in the Mancurian fir forest. Soil nitrogen contents in the deciduous forest were higher than that in the Manchurian fir forest, however, no differences in foliar nitrogen content and retranslocation rate in C. cordata between the two stands were found. C. cordata in the Manchurian fir forest with high LAI throughout a year, had lower LMA, foliar nitrogen content and chlorophyll a/b, while had higher total chlorophyll content and chlorophyll/N than that in the deciduous forest. These results implied C. cordata under different environments are using different strategies for nutrient use and allocations.

Fertilizer Concentration after Flowering Affects Growth and Fruit Setting of Ornamental Pepper (개화 후 비료의 농도가 Ornamental Pepper의 생장과 착과에 미치는 영향)

  • 진영욱;정순주;이범선;강종구
    • Journal of Bio-Environment Control
    • /
    • v.12 no.2
    • /
    • pp.95-100
    • /
    • 2003
  • To evaluate the effect of the fertilizer concentration after flowering on growth a31d fruit setting of ornamental pepper (Capsicum annuum L.), plants were fertilized with $100\;mg{\cdot}L^{-1} of N ($EC=0.8\;dS{\cdot}m^{-1}) until flowering, and then with 0 (no fertilizer), 100, 200 or $300\;mg{\cdot}L^{-1} of N (fertilizer solution EC of 0.15, 0.8, 1.45 or $2.10\;dS{\cdot}m^{-1}, respectively) until harvest. Maximum leaf area and shoot dry mass at the end of the growing period were obtained when plants were fertilized with $200\;mg{\cdot}L^{-1} of N. Total fruit number per plant at the end of the growing period was not different when plants were fertilized with 100,200 or 300 mg{\cdot}L^{-1}of N concentration. When plants were fertilized with $200\;mg{\cdot}L^{-1} of N, the number of fruits per plant was decreased significantly as compared to 100, 200 or $300\;mg{\cdot}L^{-1} of N, whereas the percentage of red fruits at the end of the growing period was maximized. Total fruit fresh weight per plant at the end of the growing period was highest with the concentration of $200\;mg{\cdot}L^{-1} of N. The EC of the growing medium remained within 0.8 to $1.2\;dS{\cdot}m^{-1}\;2.0\;to\;3.0dS{\cdot}m^{-1}, or 3.0 to 4.5 dS{\cdot}m^{-1}when fertilizer concentrations were 100, 200 or $300\;mg{\cdot}L^{-1} of N, respectively. Throughout most of the experiment, the pH of the growing medium remained within 5.4 to 6.2, but dropped to 4.9 near the end of the experiment when fertilizer concentration was 200 or 300\;mg{\cdot}L^{-1} of N. Content of most of the nutrients In the leaf was not affected by the different fertilizer concentration. Only aluminum was significantly affected and decreased linearly with increasing fertilizer concentration. The results from this study indicated that optimal fertilizer concentration after flowering for commercial production of ornamental pepper was 100 or $200\;mg{\cdot}L^{-1} of N. At these concentrations, the EC of the growing medium remained approximately within 0.8 to 1.2 and 2 to $3\;dS{\cdot}m^{-1}, respectively. This appears to be the optimal range for vegetative growth or fruit setting of ornamental pepper plants, and indicates that ornamental pepper can be grown with a fairly wide range of fertilizer concentrations.

Development of Summer Leaf Vegetable Crop Energy Model for Rooftop Greenhouse (옥상온실에서의 여름철 엽채류 작물에너지 교환 모델 개발)

  • Cho, Jeong-Hwa;Lee, In-Bok;Lee, Sang-Yeon;Kim, Jun-Gyu;Decano, Cristina;Choi, Young-Bae;Lee, Min-Hyung;Jeong, Hyo-Hyeog;Jeong, Deuk-Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.246-254
    • /
    • 2022
  • Domestic facility agriculture grows rapidly, such as modernization and large-scale. And the production scale increases significantly compared to the area, accounting for about 60% of the total agricultural production. Greenhouses require energy input to create an appropriate environment for stable mass production throughout the year, but the energy load per unit area is large because of low insulation properties. Through the rooftop greenhouse, one of the types of urban agriculture, energy that is not discarded or utilized in the building can be used in the rooftop greenhouse. And the cooling and heating load of the building can be reduced through optimal greenhouse operation. Dynamic energy analysis for various environmental conditions should be preceded for efficient operation of rooftop greenhouses, and about 40% of the solar energy introduced in the greenhouse is energy exchange for crops, so it should be considered essential. A major analysis is needed for each sensible heat and latent heat load by leaf surface temperature and evapotranspiration, dominant in energy flow. Therefore, an experiment was conducted in a rooftop greenhouse located at the Korea Institute of Machinery and Materials to analyze the energy exchange according to the growth stage of crops. A micro-meteorological and nutrient solution environment and growth survey were conducted around the crops. Finally, a regression model of leaf temperature and evapotranspiration according to the growth stage of leafy vegetables was developed, and using this, the dynamic energy model of the rooftop greenhouse considering heat transfer between crops and the surrounding air can be analyzed.

Effects of Mulberry-Leaf Powder Tofu Consumption on Serum Lipid Profiles, Ca, Ca/P Ratio and Pb Status in Middle-Aged Women (뽕잎분말 첨가두부 섭취가 비만 중년여성의 혈청 지질, 칼슘, 칼슘/인 비율 및 납 수준변화에 미친 영향)

  • Kim, A.J.;Kim, M.H.;Chung, Kun-Sub
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.432-437
    • /
    • 2006
  • This study was carried out to investigate the effects of mulberry-leaf powder Tofu (MPT) on serum lipids profiles, Ca levels, Ca/P ratio and Pb levels in 30 middle aged obese women living in the Choongnam area. 100 g/day MPT was consumed for 4 weeks. The nutrient contents per 100 g MPT were 86.71 kcal (energy), 8.98 g protein, 0.53 mg fiber, 211.33 mg Ca and 1.59 g fat. Anthropometric measurements, 24 h recall dietary intakes, serum levels of protein, albumin, glucose, Ca and Pb, lipid profiles (cholesterol, triglyceride, HDL-cholesterol, LDL-cholesterol), and the Ca/P ratio were analyzed before and after consumption of MPT. After consumption of MPT, there were no significant differences in anthropometric measurements, the levels of serum protein, albumin, glucose, total cholesterol, HDL-cholesterol, lipase activity, HTR (HDL-cholesterol/total cholesterol), CRF (cardiac risk factor), Ca, Ca/P ratio and Pb. There were decreases in the levels of serum triglyceride, LDL-cholesterol, AI (atherogenic index) and LHR (LDL-cholesterol/HDL-cholesterol). Significantly increased dietary intakes of plant protein, total Ca, and plant Ca were observed.

Microprogation And Environment Conditions Affecting On Growth Of In Vitro And Ex Vitro Of A. Formosanus Hay

  • Ket, Nguyen-Van;Paek, Kee-Yoeup
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2002.11a
    • /
    • pp.29-30
    • /
    • 2002
  • The goal of this research was to develop the effectiveness of in vitro culture method for A. formosanus and study the environment in vitro conditions affecting on growth. The first series of experiments were examined to investigate the response of three different basal media, MS (Murashige and Skoog, 1962), Knudson (KC; Knudson, 1946) and modified hyponex on growth and multiplication during in vitro culture. Multiple shoot proliferation was induced in shoot tip explants on Hyponex (H3) media supplemented with BA (1 mg1$\^$-1/) or TDZ (1-2 mg1$\^$-1/). Addition of activated charcoal (1%) to the TDZ containing medium promoted rapid shoot tip proliferation (11.1 shoots per explant) but the same medium had an opposite effect resulting in poor proliferation in the nodal explants. However, the regenerated shoots had slow growth rate and failed to elongate. This problem was overcome by transferring the shoot clumps to a hormone free H3 media supplemented with 2% sucrose and 0.5% activated charcoal. Using bioreactor culture for scaling up was also shown the best way for multiple shoot induction and growth of this plant. The second series of experiments was studied to investigate the effect of physical environment factors on growth of in vitro plantlets. The Anoectochilus formosanus plantlets were cultured under different air exchange rate (0.1, 0.9, 1.2h$\^$-1/), without sucrose or supplement 20g.1$\^$-1/ (photoautotrophic or photomixotrophic, respectively), and different photosynthesis photon flux (40, 80, 120 ,${\mu}$mol.m$^2$.s$\^$-1/- PPF). Under non-enrichment CO$_2$ treatment, slow growth was observed in photoautotrophical condition as compared with photomixotrophical condition on shoot height, fresh weigh and dry weight parameters; High air exchange (1.2.h-l) was found to be inadequate for plant growth in photomixotrophical condition. On the contrary, under CO$_2$, enrichment treatment, the plant growth parameters were sharply (visibly) improved on photoautotrophic treatments, especially on the treatment with air exchange rate of 0.9.h-1. The growth of plant in photoautotrophic condition was not inferior compared with photomixotrophic, and the best growth of plantlet was observed in treatment with low air exchange rate (0.9.h-1). Raising the PPF level from 80 to 120${\mu}$mol.m$\^$-2/.s$\^$-1/ decreased the plant height, particularly at 120${\mu}$mol.m$\^$-2/.s$\^$-1/ in photoautotrophic condition, fresh weight and dry weight declined noticeably. At the PPF of 120${\mu}$mol.m$\^$-2/,s$\^$-1/, chlorophyll contents lowed compared to those grown under low PPF but time courses of net photosynthesis rate was decreased noticeably. Light quality mainly affected morphological variables, changes of light quality also positively affected biomass production via changes in leaf area, stem elongation, chlorophyll content. Plant biomass was reduced when A. formosanus were grown under red LEDs in the absence of blue wavelengths compare to plants grown under supplemental blue light or under fluorescent light. Stem elongation was observed under red and blue light in the present experiment. Smaller leaf area has found under blue light than with other lighting treatments. Chlorophyll degradation was more pronounced in red and blue light compared with white light or red plus blue light which consequent affected the photosynthetic capacity of the plant. The third series of experiment were studied to investigate the effect of physical environment factors on growth of ex vitro plants including photosynthesis photon flux (PPF), light quality, growing substrates, electrical conductivity (EC) and humidity conditions. In the present experiments, response of plant on PPF and light quality was similar in vitro plants under photosynthesis photon flux 40${\mu}$mol.m,$\^$-2/.s$\^$-1/ and white light or blue plus red lights were the best growth. Substrates testing results were indicated cocopeat or peat moss were good substrates for A. formosanus growth under the greenhouse conditions. In case of A. formosanus plants, EC is generally maintained in the range 0.7 to 1.5 dS.m-1 was shown best results in growth of this plant. Keeping high humidity over 70% under low radiation enhanced growth rate and mass production.

  • PDF

Effect of Stem Number on Growth, Fruit Quality, and Yield of Sweet Peppers Grown in Greenhouses under Supplemental Lighting with High Pressure Sodium Lamps in Winter (겨울철 고압나트륨등 보광 하에서 온실재배 파프리카의 줄기 유인 수가 생육, 과실 품질 및 생산량에 미치는 영향)

  • Yoon, Seungri;Kim, Jin Hyun;Hwang, Inha;Kim, Dongpil;Shin, Jiyong;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.30 no.3
    • /
    • pp.237-243
    • /
    • 2021
  • The objective of this study was to evaluate the effect of stem number on plant growth, fruit quality, and yield of sweet peppers grown in greenhouses under supplemental lighting in winter. The seedlings were transplanted at 3.2 plants·m-2 on October 26, 2020, and started supplemental lighting with 32 high pressure sodium lamps for 16-hour photoperiod from December 1, 2020 to May 25, 2021. Stems were differently trained with 2 and 3 numbers after branching nodes were developed. In the final harvest, the plant height was significantly shorter in the 3 stem-plants than in the 2 stem-plants. The number of nodes per stem and the leaves per plant were increased in the 3 stem-plants than in the 2 stem-plants, while the leaf area was less affected. There were no significant differences in the dry mass of leaves, stems, and immature fruits between the 2 and 3 stem-plants. The fruit fresh weight and fruit dry weight in the 3 stem-plants were decreased by 17% and 12% at 156 days after transplanting (DAT), and by 17% and 15% at 198 DAT compared to those in the 2 stem-plants, respectively. The marketable fruit rates were 93.6% and 95.4% in the 2 and 3 stem-plants, respectively. The total fruit yield in the 3 stem-plants was increased by 30.2% as compared to that in the 2 stem-plants. We concluded that the 3-stem-training cultivation positively affected the total fruit yield by sustaining adaptive vegetative growth of the plants. This result will help producers make useful decisions for increasing productivity of sweet peppers in greenhouses.

A New Early-Heading and High-Yielding Forage Rye Variety, 'Dagreen' (조숙 다수성 청예 조사료용 호밀 신품종 '다그린')

  • Cheong, Young-Keun;Heo, Hwa-Young;Park, Hyoung-Ho;Hwang, Jong-Jin;Han, Ouk-Kyu;Park, Tae-Il;Park, Ki-Hun;Choi, Jae-Seong;Seo, Jae-Hwan;Kim, Dae-Wook;Kim, Ki-Jong;Kim, Jung-Gon
    • Korean Journal of Breeding Science
    • /
    • v.42 no.6
    • /
    • pp.600-605
    • /
    • 2010
  • 'Dagreen' (Scale cereal L.), a new rye variety was developed from the open pollination among 10 rye lines at the National Institute of Crop Science in 1995 and mass selection were made at National Institute of Crop Science from 1996 to 1999. Recurrent selections were made at Dept. Rice and Winter Cereal Crop, NICS, RDA from 2000 to 2006. This new variety has erect plant type with medium size pale green leaves. The number of spike per $m^2$ was 713 and the plant height was 103cm. The heading date of 'Dagreen' was April 24 which was 7 days earlier than that of "Koolgrazer". It was adaptable for forage use at an early stage as a whole crop. Lodging resistance was higher than that of check variety 'Koolgrazer'. The chemical components and quality of forage showed 10.2 % crude protein, 36.6 % ADF, 62.4 % NDF and 59.9 % TDN. 'Dagreen' showed high resistance to powdery mildew and leaf rust than those of check variety in the field condition. The average dry matter (7,010kg $ha^{-1}$) of 'Dagreen' harvested at April 28 were 6 % higher than 'Koolgrazer'. This variety is recommended for all of the rye cultivation area in Korea.