• Title/Summary/Keyword: Leaf Image Classification

Search Result 23, Processing Time 0.021 seconds

Classification Method of Plant Leaf using DenseNet (DenseNet을 활용한 식물 잎 분류 방안 연구)

  • Park, Young Min;Gang, Su Myung;Chae, Ji Hun;Lee, Joon Jae
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.5
    • /
    • pp.571-582
    • /
    • 2018
  • Recently, development of deep learning has shown better image classification result than human. According to recent research, a hidden layer of deep learning is deeper, and a preservation of extracted features shows good results. However, in the case of general images, the extracted features are clear and easy to sort. This study aims to classify plant leaf images. This plant leaf image has high similarity in each image. Since plant leaf images have high similarity not only between images of different species but also within the same species, classification accuracy is not increased by simply extending the hidden layer or connecting the layers. Therefore, in this paper, we tried to improve the hidden layer of the algorithm called DenseNet which shows the recent excellent classification results, and compare the results of several different modified layers. The proposed method makes it possible to classify plant leaf images collected in a natural environment more easily and accurately than conventional methods. This results in good classification of plant leaf image data including unnecessary noise obtained in a natural environment.

Multi-granular Angle Description for Plant Leaf Classification and Retrieval Based on Quotient Space

  • Xu, Guoqing;Wu, Ran;Wang, Qi
    • Journal of Information Processing Systems
    • /
    • v.16 no.3
    • /
    • pp.663-676
    • /
    • 2020
  • Plant leaf classification is a significant application of image processing techniques in modern agriculture. In this paper, a multi-granular angle description method is proposed for plant leaf classification and retrieval. The proposed method can describe leaf information from coarse to fine using multi-granular angle features. In the proposed method, each leaf contour is partitioned first with equal arc length under different granularities. And then three kinds of angle features are derived under each granular partition of leaf contour: angle value, angle histogram, and angular ternary pattern. These multi-granular angle features can capture both local and globe information of the leaf contour, and make a comprehensive description. In leaf matching stage, the simple city block metric is used to compute the dissimilarity of each pair of leaf under different granularities. And the matching scores at different granularities are fused based on quotient space theory to obtain the final leaf similarity measurement. Plant leaf classification and retrieval experiments are conducted on two challenging leaf image databases: Swedish leaf database and Flavia leaf database. The experimental results and the comparison with state-of-the-art methods indicate that proposed method has promising classification and retrieval performance.

Soft Computing Optimized Models for Plant Leaf Classification Using Small Datasets

  • Priya;Jasmeen Gill
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.8
    • /
    • pp.72-84
    • /
    • 2024
  • Plant leaf classification is an imperative task when their use in real world is considered either for medicinal purposes or in agricultural sector. Accurate identification of plants is, therefore, quite important, since there are numerous poisonous plants which if by mistake consumed or used by humans can prove fatal to their lives. Furthermore, in agriculture, detection of certain kinds of weeds can prove to be quite significant for saving crops against such unwanted plants. In general, Artificial Neural Networks (ANN) are a suitable candidate for classification of images when small datasets are available. However, these suffer from local minima problems which can be effectively resolved using some global optimization techniques. Considering this issue, the present research paper presents an automated plant leaf classification system using optimized soft computing models in which ANNs are optimized using Grasshopper Optimization algorithm (GOA). In addition, the proposed model outperformed the state-of-the-art techniques when compared with simple ANN and particle swarm optimization based ANN. Results show that proposed GOA-ANN based plant leaf classification system is a promising technique for small image datasets.

Feasibility in Grading the Burley Type Dried Tobacco Leaf Using Computer Vision (컴퓨터 시각을 이용한 버얼리종 건조 잎 담배의 등급판별 가능성)

  • 조한근;백국현
    • Journal of Biosystems Engineering
    • /
    • v.22 no.1
    • /
    • pp.30-40
    • /
    • 1997
  • A computer vision system was built to automatically grade the leaf tobacco. A color image processing algorithm was developed to extract shape, color and texture features. An improved back propagation algorithm in an artificial neural network was applied to grade the Burley type dried leaf tobacco. The success rate of grading in three-grade classification(1, 3, 5) was higher than the rate of grading in six-grade classification(1, 2, 3, 4, 5, off), on the average success rate of both the twenty-five local pixel-set and the sixteen local pixel-set. And, the average grading success rate using both shape and color features was higher than the rate using shape, color and texture features. Thus, the texture feature obtained by the spatial gray level dependence method was found not to be important in grading leaf tobacco. Grading according to the shape, color and texture features obtained by machine vision system seemed to be inadequate for replacing manual grading of Burely type dried leaf tobacco.

  • PDF

Multi-temporal Landsat ETM+ Mosaic Method for Generating Land Cover Map over the Korean Peninsula (한반도 토지피복도 제작을 위한 다시기 Landsat ETM+ 영상의 정합 방법)

  • Kim, Sun-Hwa;Kang, Sung-Jin;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.87-98
    • /
    • 2010
  • For generating accurate land cover map over the whole Korean Peninsula, post-mosaic classification method is desirable in large area where multiple image data sets are used. We try to derive an optimal mosaic method of multi-temporal Landsat ETM+ scenes for the land cover classification over the Korea Peninsula. Total 65 Landsat ETM+ scenes were acquired, which were taken in 2000 and 2001. To reduce radiometric difference between adjacent Landsat ETM+ scenes, we apply three relative radiometric correction methods (histogram matching, 1st-regression method referenced center image, and 1st-regression method at each Landsat ETM+ path). After the relative correction, we generated three mosaic images for three seasons of leaf-off, transplanting, leaf-on season. For comparison, three mosaic images were compared by the mean absolute difference and computer classification accuracy. The results show that the mosaic image using 1st-regression method at each path show the best correction results and highest classification accuracy. Additionally, the mosaic image acquired during leaf-on season show the higher radiance variance between adjacent images than other season.

A Study on the Classification of Forest by Landsat TM Data (Landsat TM 자료를 이용한 임종구분에 관한 연구)

  • 최승필;홍성태;박재훈
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.11 no.1
    • /
    • pp.55-60
    • /
    • 1993
  • Forest occupied a part of natural ecosystem carries out a role of purifying air, preserving water resource, prevention of the breeding and extermination, recreation areas and etc that preserve and for me one's living environment. In this study, the classification for management of this forest is performed with Landsat TM Image. The classes are decided needle-leaf trees, broad-leaf trees, farming land and grass land, and water. When the TM digital images are classified on computer, water is represented in 7∼13 D.N. of 4th band. But the others is appeared similar mostly specific values so that must be done image processing. When the images compounded 2ed band and 3ed band are processed with ratio of enhancement. Needle-leaf treas is represented in l18∼136 D.N. of 1st band, broad-leaf trees in 72∼91 D.N. of 3ed band, farm land and glass land in 96∼120 of 3ed band. Forest Information is classified with M.L.C, an image classification method. The errors of needle-leaf trees, broad-leaf trees, farm land and grass land, and water are appeared each -7.43, +1.89,+7.58 and -2.04 as compared the digital image with investigation on the scene. Finally, these results are useful for classification of forest vegetation with Landsat TM Image.

  • PDF

Drone Image Classification based on Convolutional Neural Networks (컨볼루션 신경망을 기반으로 한 드론 영상 분류)

  • Joo, Young-Do
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.97-102
    • /
    • 2017
  • Recently deep learning techniques such as convolutional neural networks (CNN) have been introduced to classify high-resolution remote sensing data. In this paper, we investigated the possibility of applying CNN to crop classification of farmland images captured by drones. The farming area was divided into seven classes: rice field, sweet potato, red pepper, corn, sesame leaf, fruit tree, and vinyl greenhouse. We performed image pre-processing and normalization to apply CNN, and the accuracy of image classification was more than 98%. With the output of this study, it is expected that the transition from the existing image classification methods to the deep learning based image classification methods will be facilitated in a fast manner, and the possibility of success can be confirmed.

Superpixel-based Apple Leaf Disease Classification using Convolutional Neural Network (합성곱 신경망을 이용하는 수퍼픽셀 기반 사과잎 병충해의 분류)

  • Kim, Manbae;Choi, Changyeol
    • Journal of Broadcast Engineering
    • /
    • v.25 no.2
    • /
    • pp.208-217
    • /
    • 2020
  • The classification of plant diseases by images captured by a camera sensor has been studied over past decades. A method that has gained much interest is to use image segmentation, from which statistical features are derived and analyzed by machine learning. Recently, deep learning has been adopted in this area. However, image segmentation is still a difficult task to achieve stable performance due to a variety of environmental variations. The end-to-end learning in neural network has a demerit that train images may be different from real images acquired in outdoor fields. To solve these problems, we propose superpixel-based disease classification method using end-to-end CNN (convolutional neural network) learning. Based on experiments performed on PlantVillage apple images, the classification accuracy is 98.29% and 92.43% for full-image and superpixel. As well, the multivariate F1-score is (0.98, 0.93). Therefore we validate that the method of using superpixel is comparable to that of full-image.

Tea Leaf Disease Classification Using Artificial Intelligence (AI) Models (인공지능(AI) 모델을 사용한 차나무 잎의 병해 분류)

  • K.P.S. Kumaratenna;Young-Yeol Cho
    • Journal of Bio-Environment Control
    • /
    • v.33 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • In this study, five artificial intelligence (AI) models: Inception v3, SqueezeNet (local), VGG-16, Painters, and DeepLoc were used to classify tea leaf diseases. Eight image categories were used: healthy, algal leaf spot, anthracnose, bird's eye spot, brown blight, gray blight, red leaf spot, and white spot. Software used in this study was Orange 3 which functions as a Python library for visual programming, that operates through an interface that generates workflows to visually manipulate and analyze the data. The precision of each AI model was recorded to select the ideal AI model. All models were trained using the Adam solver, rectified linear unit activation function, 100 neurons in the hidden layers, 200 maximum number of iterations in the neural network, and 0.0001 regularizations. To extend the functionality of Orange 3, new add-ons can be installed and, this study image analytics add-on was newly added which is required for image analysis. For the training model, the import image, image embedding, neural network, test and score, and confusion matrix widgets were used, whereas the import images, image embedding, predictions, and image viewer widgets were used for the prediction. Precisions of the neural networks of the five AI models (Inception v3, SqueezeNet (local), VGG-16, Painters, and DeepLoc) were 0.807, 0.901, 0.780, 0.800, and 0.771, respectively. Finally, the SqueezeNet (local) model was selected as the optimal AI model for the detection of tea diseases using tea leaf images owing to its high precision and good performance throughout the confusion matrix.

Classification of Plants into Families based on Leaf Texture

  • TREY, Zacrada Francoise;GOORE, Bi Tra;BAGUI, K. Olivier;TIEBRE, Marie Solange
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.205-211
    • /
    • 2021
  • Plants are important for humanity. They intervene in several areas of human life: medicine, nutrition, cosmetics, decoration, etc. The large number of varieties of these plants requires an efficient solution to identify them for proper use. The ease of recognition of these plants undoubtedly depends on the classification of these species into family; however, finding the relevant characteristics to achieve better automatic classification is still a huge challenge for researchers in the field. In this paper, we have developed a new automatic plant classification technique based on artificial neural networks. Our model uses leaf texture characteristics as parameters for plant family identification. The results of our model gave a perfect classification of three plant families of the Ivorian flora, with a determination coefficient (R2) of 0.99; an error rate (RMSE) of 1.348e-14, a sensitivity of 84.85%, a specificity of 100%, a precision of 100% and an accuracy (Accuracy) of 100%. The same technique was applied on Flavia: the international basis of plants and showed a perfect identification regression (R2) of 0.98, an error rate (RMSE) of 1.136e-14, a sensitivity of 84.85%, a specificity of 100%, a precision of 100% and a trueness (Accuracy) of 100%. These results show that our technique is efficient and can guide the botanist to establish a model for many plants to avoid identification problems.