This study has shown the screening of anti-bacterial activity of three Indian medicinal plant choloroform : methanol (50:50) solvent leaf extracts (i.e. Azadirachta indica, Ocimum sanctum, and Curcuma longa) with different concentrations (10, 5, 2.5, 1.25, 0.625, 0.312, and 0.156 mg/ml) under in vitro conditions against fish pathogenic bacteria, Aeromonas hydrophila, Streptococcus iniae, Vibrio harveyi, V. anguillarum, and Edwardsiella tarda isolated from olive flounder farms, Jeju Island, South Korea. The anti-microbial activity of the A. indica and O. sanctum extracts yielded the zones of growth inhibition (ZI) was 3 and 1mm against A. hydrophila at concentration of 0.156 mg/ml when compared to that of tetracycline standard (3 mm). At highest concentration (10 mg/ml) of A. indica, O. sanctum, and C. longa, high inhibition was 9, 7, and 6 mm when compared to that of tetracycline (11 mm) against A. hydrophila. The minimum inhibitory concentration (MIC) of A. indica, O. sanctum, and C. longa at 0.156 mg/ml that yield 9, 10, and 13 CFU/ml for A. hydrophila, 16, 22, and 25 CFU/ml for S. iniae and 18, 22, and 23 CFU/ml for E. tarda compared to the tetracycline. At highest concentration (10 mg/ml) of the three extracts was better inhibiting the growth of A. hydrophila, S. iniae and E. tarda. A. indica, O. sanctum, and C. longa were determined to the potential antioxidant activityon the basis of their scavenging activity of the stable 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical. A. indica extract was 0.625 mg/ml which indicated that the strong anti-oxidant activity. However, O. sanctum and C. longa extracts showed weak anti-oxidant activity at this concentration. Hence, in vitro assay among the pathogens, A. hydropila is better inhibitory activity of the extracts. It is evident that the Indian medicinal plants extracts were subjected to its effectiveness against A. hydrophila, S. iniae, and E.tarda at low concentrations. The obtained results in the present study suggested that the Indian plant extracts is a prevention tools for Korean olive flounder aquaculture pathogens and its need further advance investigation.