• Title/Summary/Keyword: Leaf Cell

Search Result 753, Processing Time 0.03 seconds

Anticancer Effect of Persimmon Leaf Extracts on Korean Gastric Cancer Cell (감잎의 물 및 에탄올 추출물이 한국인 위암 세포주에 미치는 항암효과)

  • Kim, Ho-Jung;Kim, Mi-Kyung
    • Journal of Nutrition and Health
    • /
    • v.36 no.2
    • /
    • pp.133-146
    • /
    • 2003
  • This study was performed to investigate the in vitro and in vivo anticancer effects of persimmon leaf extracts on human gastric cancer cells. In vitro anticancer effects of persimmon leaf extracts (water extract at 8$0^{\circ}C$ for 3 hours, water extract at room temperature for 48 hours, 50% ethanol extract at 8$0^{\circ}C$ for 3 hours, 50% ethanol extract at room temperature for 48 hours, 75% ethanol extract at 8$0^{\circ}C$ for 3 hours and 75% ethanol extract at room temperature for 48 hours) on SNU16 (Korean gastric cancer cell) were investigated by MTT assay. Persimmon leaf extracts exhibited strong in vitro anticancer effects. We found that the higher the ethanol content of the solvent, the stronger the in vitro anticancer effects. Extraction yields, contents of flavonoids, vitamin A, vitamin C and vitamin E were measured. We found that the higher the ethanol content of the solvent, the higher the extraction yields and the contents of flavonoids, vitamin A and vitamin E. Among persimmon leaf extracts, 75% ethanol 8$0^{\circ}C$ extract showed the highest extraction yield, the highest contents of flavonoids, vitamin A and vitamin E and exhibitied the strongest in vitro anticancer effect on SNU16. Therefore, 75% ethanol 8$0^{\circ}C$ extract was chosen as the material to investigate in vivo anticancer effects. In vivo anticancer effect of persimmon leaf 75% ethanol 8$0^{\circ}C$ extract was investigated in SNU16 transplanted nude mice. Twenty five female nude mice (BALB/c) were blocked into five groups according to body weight and raised for 4 weeks with diets containing 4% (w/w), 8% (w/w) persimmon leaf 75% ethanol 8$0^{\circ}C$ extract, with IT (intratumoral) injection treatment with 1.65 mg/100 $\mu$1, 3.3 mg/100 $\mu$1 concentration every other day 3 weeks after SNU16 was transplanted. Persimmon 75% ethanol 8$0^{\circ}C$ extract significantly lowered tumor weight and tumor volume in SNU16 transplanted nude mice. Tumor weight and tumor volume in all experimental groups were significantly lower than those in the control group. Helper T cell (CD4) levels of mice injected with 3.3 mg/100 $\mu$1 extract significantly increased. Cytotoxic T cell (CD8) levels in all experimental groups significantly increased and helper/cytotoxic T cell ratios in all experimental groups significantly decreased. Natural killer cell and MHC class II molecule in all experimental groups significantly increased. In conclusion, persimmon leaf 75% ethanol 8$0^{\circ}C$ extract exhibited strong in vitro and in vivo anticancer effects against SNU16 cells and it increased cytotoxic T cell, natural killer cell and MHC classII molecule in experimental groups in SNU16 transplanted nude mice.

Overexpression of the Downward Leaf Curling (DLC) Gene from Melon Changes Leaf Morphology by Controlling Cell Size and Shape in Arabidopsis Leaves

  • Kee, Jae-Jun;Jun, Sang Eun;Baek, Seung-A;Lee, Tae-Soo;Cho, Myung Rae;Hwang, Hyun-Sik;Lee, Suk-Chan;Kim, Jongkee;Kim, Gyung-Tae;Im, Kyung-Hoan
    • Molecules and Cells
    • /
    • v.28 no.2
    • /
    • pp.93-98
    • /
    • 2009
  • A plant-specific gene was cloned from melon fruit. This gene was named downward leaf curling (CmDLC) based on the phenotype of transgenic Arabidopsis plants overexpressing the gene. This expression level of this gene was especially upregulated during melon fruit enlargement. Overexpression of CmDLC in Arabidopsis resulted in dwarfism and narrow, epinastically curled leaves. These phenotypes were found to be caused by a reduction in cell number and cell size on the adaxial and abaxial sides of the epidermis, with a greater reduction on the abaxial side of the leaves. These phenotypic characteristics, combined with the more wavy morphology of epidermal cells in overexpression lines, indicate that CmDLC overexpression affects cell elongation and cell morphology. To investigate intracellular protein localization, a CmDLC-GFP fusion protein was made and expressed in onion epidermal cells. This protein was observed to be preferentially localized close to the cell membrane. Thus, we report here a new plant-specific gene that is localized to the cell membrane and that controls leaf cell number, size and morphology.

A taxonomic study on genus Rhynchospora Vahl in Korea (한국산 골풀아재비속 3종의 분류학적 검토)

  • Oh, Yong Cha;Lee, Chang Shook
    • Korean Journal of Plant Taxonomy
    • /
    • v.33 no.4
    • /
    • pp.393-409
    • /
    • 2003
  • Morphological and anatomical characters of selected 3 taxa of Rhynchospora were reexamined. The epidermal patterns of achene and leaf were investigated using a scanning electron microscope (SEM) and a light microscope (LM). Morphological characters such as length and width of bract, spikelet, scale, achene, stem, leaf and leaf sheath, and shape of inflorescence, spikelet, scale, apex of scale, perigynium and achene, and number of stigma and anatomical characters (transectional shape of the stem, and leaf: vascular bundles in stem and leaf epidermal patterns: shape of fundamental epidermal cell and cell wall, type of silica body, subsidiary cell shape, size and frequency of stomatal complex of leaf) were useful for the identification. Keys based on data were presented here.

Physiological Evaluation of Korean Mountain Ginseng and Korean Mountain Ginseng Leaf Tea (장뇌삼 및 장뇌삼엽차의 생리활성평가)

  • Ye, Eun-Ju;Kim, Soo-Jung;Nam, Hak-Sic;Park, Eun-Mi;Bae, Man-Jong
    • Journal of the Korean Society of Food Culture
    • /
    • v.25 no.3
    • /
    • pp.350-356
    • /
    • 2010
  • When extracts of KMG (Korean mountain ginseng) leaf tea and fermented KMG leaf tea were compared, the fermented KMG leaf tea extract showedhigher activity at each stage of density. Among the material groups, the KMG extract hadthe least profound SOD-like activity, and similar SOD-like activities were noted in the fermented KMG, KMG leaf tea, and fermented KMG leaf tea extracts. With regard to nitrite scavenging ability at a pH of 1.2, the KMG, fermented KMG, and KMG leaf tea groups exhibited similar results, and at pH 3.0, the KMG and KMG leaf tea extract groups exhibited more profound nitrite scavenging ability compared to the fermented groups. In the case of HeLa cell treatments, the KMG and fermented KMG leaf tea extracts exhibited cancer cell propagation restraint rates in excess of 30%, at a density of 1 mg/mL. And MCF-7 cells treated with fermented KMG and KMG leaf tea showedsimilar propagation restraint rates at more than 27% of cancer cells, at a density of 1 mg/mL. Among the materials, the KMG extract hadthe lowest cancer cell propagation restraint rate at 21%, and the fermented KMG leaf tea extract had the highest rate at more than 70%.

Antioxidant activity of Persimmon Leaves during Growth (감잎의 성장시기별 항산화 효과)

  • Jeong, Seung-Il;Cho, Jung-Keun;Mok, Ji-Ye;Kim, Sang-Jun;Park, Ji-Min;Jeon, In-Hwa;Kim, Hyeon-Soo;Jang, Seon-Il
    • Korean Journal of Pharmacognosy
    • /
    • v.41 no.4
    • /
    • pp.255-263
    • /
    • 2010
  • Kojongsi persimmon (Diospyros kaki) is the major cultivar of astringent persimmon in southern of Korea. Kojongsi persimmon leaf has been traditionally used for acute and chronic diseases in Oriental countries. The purpose of this study was undertaken to investigate the antioxidative activities of the extract of Kojongsi persimmon leaf during growth. We investigated the antioxidant effects of the persimmon leaf extracts during growth on total polyphenol, total flavonoid, electronic donating ability (DPPH), nitrite (NO) scavenging and superoxide dismutase (SOD)-like activity. The next, we investigated the possible cell protective effects of the persimmon extract treatment against ultraviolet B (UVB)-induced injury in HaCaT keratinocytes. The contents of total polyphenol and flavonoid in leaf extract of Kojongsi persimmon were increased in time-dependent manner. In Jun, DPPH and NO radical scavenging and SOD-like activities in the leaf extract of Kojongsi persimmon was increased to the highest. However, the antioxidant activities in persimmon varieties were not any difference. The cell cytotoxicity by UVB irradation in HaCaT keratinocytes was significantly increased with the compared to the control group. However, the treatment of leaf extract of Kojongsi persimmon in HaCaT keratinocytes was shown to protective effect against UVB-induced cell cytotoxicity. These results suggest that the leaf extract of Kojongsi persimmon has potent antioxidant activity, and protective effect against UVB-induced keratinocyte injury. Thus, these properties may be contributed in the care of acute and chronic diseases.

Regulation of cell size and cell number by LANCEOLATA1 gene in Arabidopsis (애기장대의 세포 크기와 세포 수를 조절하는 LANCEOLATA1 유전자)

  • Cho, Kiu-Hyung;Jun, Sang-Eun;Jeong, Soon-Jae;Yi, Young-Byung;Kim, Gyung-Tae
    • Journal of Life Science
    • /
    • v.17 no.1 s.81
    • /
    • pp.1-5
    • /
    • 2007
  • The Precesses for leaf development in dicotyledonous plants are surprisingly complex, while the mechanism of controlling and coordinating them is poorly understood. To characterize the fundamental features of the leaf development of Arabidopsis, we first attempted to isolate mutants that alter leaf morphology. Here, leaf morphological mutant of Arabidopsis, lanceolatal (lan1) which has small and narrow leaves have isolated and characterized. To clarify the function of LAN1 in organ development, we characterized lan1-7 mutant using an anatomical and genetic approach. The lan1-7 mutant had reduced size of foliage leaves and reduced dimensions of stems. A reduction both in cell size and in cell number was evident at the cellular level in the lan1 mutant, revealing that LAN1 gene appears to affect cell division at an earlier stage and cell elongation throughout the development of leaf primordia. from the analysis of heterogeneous plant with lan1 mutation and 35S-AG transgenic plant, AG gene is revealed to regulate leaf morphology under the control of 35S promoter. Thus, MADS-box gene was revealed to have some relationship to that of LAN1 gene at certain stage in leaf development processes.

Growth characteristics of chrysanthemum according to planting density

  • Chung, Sun-Ok;Kim, Yong-Joo;Lee, Kyu-Ho;Lee, Cheol-Hwi;Noh, Hyun-Kwon
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.4
    • /
    • pp.604-612
    • /
    • 2017
  • In this study, the effects of planting density on the growth of chrysanthemum in a greenhouse were evaluated on two popular varieties (i.e., Sinma and Moonlight). Planting density treatments were as follows: 1) $12cm{\times}12cm$, 2) $6cm{\times}12cm$, 3) $6cm{\times}12cm$ with one-cell vacant, and 4) $6cm{\times}12cm$ with two-cell vacant. Size of each treatments indicate one chrysanthemum was planted in that sized cell that was rectangular shaped field and these treatments were located in a line. Moreover, "one and two-cell vacant" means that it makes middle point of the field empty, offers beside chrysanthemum larger spaces to grow. For the Sinma variety, the results of growth and flowering characteristics at the harvesting stage showed that leaf number, leaf length, flower length, and leaf area were highest when the crop was planted at the $12cm{\times}12cm$ density, and the next preferable density was $6cm{\times}12cm$ with one-cell vacant. For the Moonlight variety, the results showed that stalk height and diameter, leaf number and length, flower length, leaf area, and flower number were highest at the $12cm{\times}12cm$ planting density. For Sinma, ratios of marketable production were 87.5% and 83.3% for the $12cm{\times}12cm$ and $6cm{\times}12cm$ with two-cell vacant, respectively. For Moonlight, ratios were 88.0% and 84.3% for the $12cm{\times}12cm$ and $6cm{\times}12cm$ with two-cell vacant.

Changes in Chemical Composition of Sorghum as Influenced by Growth Stage and Cultivar

  • Firdous, Rafia;Gilani, Abrar Hussain
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.7
    • /
    • pp.935-940
    • /
    • 2001
  • To determine the effect of different growth stages and cultivars on the chemical composition of sorghum plant and its morphological fractions, samples of whole plant, leaf and stem of J.S-263, J.S-88 and Hegari cultivars, harvested at various growth stages were drawn for analysis. All the samples were analysed for their dry matter contents and various cell wall components such as NDF, ADF. hemicellulose, cellulose, lignin, cutin and silica. Significant increase in DM contents of whole sorghum plant, leaf and stem was observed with advancing stage of growth. The highest DM content was recorded in leaf fraction of the plant. All the cell wall constituents increased significantly in whole sorghum plant, leaf and stem as the plant matured. The maximum NDF, ADF, cellulose and lignin contents were observed in stem fraction, followed by whole plant. However, the hemicellulose, cutin and silica contents were higher in leaf fraction of the plant. The cultivars were found to have some effect on the chemical composition of whole plant, leaf and stem fractions. The results indicated that plant maturity had a much greater effect on the chemical composition of sorghum plant, whereas it was little affected by cultivars.

Protective Effect of Albizzia julibrissin Leaf Extract on the Cytotoxicity Induced by Cupric Acetate Metallic Mordant (금속매염제인 초산구리의 세포독성에 대한 자귀나무잎 추출물의 보호 효과)

  • Chung, Jung-Hwa;Rim, Yo-Sup;Seo, Young-Mi
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.5
    • /
    • pp.520-528
    • /
    • 2019
  • Objectives: This study assessed the cytotoxicity of the metallic mordant cupric acetate (CA) and the protective effect of Albizzia julibrissin (AJ) leaf extract on CA-induced cytotoxicity in NIH3T3 fibroblasts. Methods: For this study, cell viability and antioxidative effects such as the inhibitory activity of lipid peroxidation (LP) and superoxide anion-radical (SAR) scavenging activity were assessed. Results: CA significantly decreased cell viability in a dose-dependent manner, and the $XTT_{50}$ value was measured as $55.0{\mu}M$ of CA. The cytotoxicity of CA was determined as highly toxic by Borenfreund and Puerner's toxic criteria. The catalase antioxidant significantly increased cell viability diminished by CA-induced cytotoxicity in these cultures. Regarding the protective effect of AJ leaf extract on CA-induced cytotoxicity, AJ leaf extract remarkably increased the SAR scavenging ability and the inhibitory ability of LP. From these findings, it is suggested that oxidative stress is involved in the cytotoxicity of CA, and AJ leaf extract effectively protected CA-induced cytotoxicity via antioxidative effects. Conclusions: Natural resources like AJ leaf extract may be a putative therapeutic agent for treatment or alleviation of the toxicity induced by CA metallic mordant.

A taxonomic study on sect. Rhomboidales Kük. and sect. Digitatae Fr. of genus Carex L. subgen. Eucarex Cross & Germ. (Cyperaceae) in Korea (한국산 사초속 사초아속(Carex L. subgen. Eucarex Cross & Germ.) 피사초절과 그늘사초절 식물의 분류학적 연구)

  • Oh, Yong Cha;Kim, Ji Hyun
    • Korean Journal of Plant Taxonomy
    • /
    • v.32 no.3
    • /
    • pp.301-338
    • /
    • 2002
  • Morphological characters of sections Rhomboidales (four taxa) and Digitatae (seven taxa) of the subgen. Eucarex (genus Carex, Cyperaceae) were reexamined. The epidermal patterns of perigynium, achene and leaf were investigated by SEM and LM. Morphological characters such as length and width of stem, leaf, bract, spike, scale, perigynium and achene, and shape of cross-sectioned stem, spike, scale, apex of scale, perigynium, beak and base of perigynium, achene, hair present or absent in perigynium, number of involucre and epidermal pattern of perigynium, achene and leaf(shape of fundamental epidermal cell and cell wall, type of silica body, shape of beak epidermal cell and cell wall in perigynium, subsidiary cell shape, size and frequency of stomatal complex of leaf) were useful for the identification of the observed 11 taxa. According to the current study, examined 11 taxa of sections Rhomboidales and Digitatae were distinct from each other regarding by length of leaf, stem, pistillate scale and perigynium, shape and epidermal cell of perigynium beak. C. lanceolata and C. humilis have been confused due to similar morphological characters. C. lanceolata and C. humilis were distinct, however with respect to from length of stem, leaf ligule present or absent, shape of cross-sectioned stem, epidermal patterns of perigynium, achene and leaf. And C. lanceolata could be distinguished from C. pediformis by shape of perigynium and achene, shape of cross-sectioned of stem, epidermal pattern of perigynium, achene and leaf.