• Title/Summary/Keyword: Lead storage battery

Search Result 63, Processing Time 0.028 seconds

A Study on Optimal Operation Strategy for Mild Hybrid Electric Vehicle Based on Hybrid Energy Storage System

  • Bae, SunHo;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.631-636
    • /
    • 2018
  • This paper proposed an optimal operation strategy for a hybrid energy storage system (HESS) with a lithium-ion battery and lead-acid battery for mild hybrid electric vehicles (mild HEVs). The proposed mild HEV system is targeted to mount the electric motor and the battery to a conventional internal combustion engine vehicle. Because the proposed mild HEV includes the motor and energy storage device of small capacity, the system focuses on low system cost and small size. To overcome these limitations, it is necessary to use a lead acid battery which is used for a vehicle. Thus, it is possible to use more energy using HESS with a lithium battery and a lead storage battery. The HESS, which combines the lithium-ion battery and the secondary battery in parallel, can achieve better performance by using the two types of energy storage systems with different characteristics. However, the system requires an operation strategy because accurate and selective control of the batteries for each situation is necessary. In this paper, an optimal operation strategy is proposed considering characteristics of each energy storage system, state-of-charge (SOC), bidirectional converters, the desired output power, and driving conditions in the mild HEV system. The performance of the proposed system is evaluated through several case studies with respect to energy capacity, SOC, battery characteristic, and system efficiency.

Recent Instantiation Case of Lead Acid Battery for Energy Storage Systems (에너지 저장 시스템용 납 축전지의 최근 실증 사례)

  • An, Sang-Yong;Jung, Ho-Young
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.344-349
    • /
    • 2013
  • Energy storage system is an energy reservoir which can store the electrical energy produced by the power plant into the chemical energy at the time whenever it needs to use. Accordingly, the energy storage system can help to improve the energy utilization efficiency and the stabilization of the power supply system. In addition, it can cope with the issues of carbon dioxide reduction and depletion of fossil fuel. Lead-acid battery in the secondary battery fields is one of the most developed technologies. It is also economical, reliable storage device. Therefore, the instantiation case of energy storage system using lead-acid battery was investigated for the reference studies.

A Monitoring Unit for Lead Storage Batteries in Stand Alone PV Generation Systems (독립형 태양광 발전소의 연 축전지 모니터링장치 개발)

  • Moon, Chae-Joo;Kim, Tae-Gon;Chang, Young-Hag;Kjm, Eui-Sun;Lim, Jung-Min
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.2
    • /
    • pp.1-7
    • /
    • 2009
  • Use of the PV(photovoltaic) generation system is increased in such areas as remote mountain places or islands at which electrical energy is not serviced. The stand alone PV system is required the power storage products such as battery, fly wheel and super capacitor. Several lead storage batteries are connected in series to get high voltages. The life of lead storage battery is shortened when over charge or over discharge takes place. So, it is needed to control batteries not to be overcharged or be discharged deeply. Voltage of each battery was ignored in former control methods in which overall voltage was used to control charge or discharge battery. In this study, the charging and discharging voltage variations of sealed lead storage batteries with l2V/l.2A were investigated step by step experiments. The results of the test show that one should consider and specify the state of each battery to prevent overcharge or deep discharge. With the basis of the experiments, we designed a monitoring unit to monitor battery voltages simultaneously using micro-controller. The unit measures voltage of 20 batteries simultaneously and displays data on the color LCD monitor with curved line graph. It also sends data to PC using the RS232C communication port. The designed unit was adapted to stand alone PV system with 1kW capacity and lead storage batteries are connected to the PV generation system. The number of lead storage batteries was 10 in series and 12V/250Ah each. Resistive load with 3kW was used for discharging.

Lead Exposure Indices, Workloads, and Environmental Factors in Battery Manufacturing Workplace

  • Cho, Kwang Sung;Jeong, Byung Yong
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.259-266
    • /
    • 2013
  • Objective: This study aims to evaluate the workloads of industrial and automobile storage battery industries and their association to biological exposure indices. Background: Occupational lead exposure at battery manufacturing workplace is the most serious problem in safety and health management. Method: We surveyed 145 workers in 3 storage battery industries. Environmental factors(lead in air, temperature, humidity and vibration)), biological exposure indices(lead in blood and zinc protoporphyrin in blood) and individual workload factors(process type, work time, task type, weight handling and restrictive clothing) were measured in each unit workplace. Results/Conclusion: Air lead concentration is statistically significant in associations with workload factors(process type, work time, task type, and restrictive clothing) and environmental factors (humidity and vibration), whereas zinc protoporphyrin in blood are significantly associated with work time and weight handling. And lead in blood is significantly associated with work time, weight handling and temperature. Application: The results of this study are expected to be a fundamental data to job design.

A Study on Characteristics of Charging and Discharging for Lead Storage Batteries in Series (직렬 연결된 납축전지의 충방전 전압 특성 연구)

  • Moon, Chae-Joo;Jin, Jong-Soo;Seo, Dong-Choon;Jung, Kwen-Sung;Kim, Tae-Gon;Kim, Young-Gu
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.75-79
    • /
    • 2008
  • To control the lead storage batteries it is necessary to consider the characteristics of each battery connected in series. In this study, the charging and discharging characteristics of sealed lead storage batteries 12V/1.2A was investigated one by one through experiments. The results of the experiment shows that one should consider the state of each battery to prevent overcharge or deep discharge. Also, we designed an equipment to measure battery voltages simultaneously using micro-controller. This equipment will be useful for monitoring batteries at PV generation system.

  • PDF

The current status and direction of development of lead acid battey for electric energy storage system. (전력저장용 연축전지의 개발방향 및 현황)

  • Chon, M.H.;Kim, K.T.;Park, J.C.;Kim, H.Y.;Ko, Yo;Eom, Y.C.
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.277-283
    • /
    • 1989
  • For the battery energy storage system (BESS), battery is one of most important parts. Various new type batteries for load shifting are under developing. The lead acid battery technology status such as structure, charge and discharge characteristics, life cycle etc. is reviewed and research trend is also introduced.

  • PDF

Kt Factor Analysis of Lead-Acid Battery for Nuclear Power Plant

  • Kim, Daesik;Cha, Hanju
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.4
    • /
    • pp.460-465
    • /
    • 2013
  • Electrical equipments of nuclear power plant are divided into class 1E and non-class 1E. Electrical equipment and systems that are essential to emergency reactor shutdown, containment isolation, reactor core cooling, and containment and reactor heat removal, are classified as class 1E. batteries of nuclear power plant are divided into four channels, which are physically and electrically separate and independent. The battery bank of class 1E DC power system of the nuclear power plant use lead-acid batteries in present. The lead acid battery, which has a high energy density, is the most popular form of energy storage. Kt factor of lead-acid battery is used to determine battery size and it is one of calculatiing coefficient for capacity. this paper analyzes Kt factor of lead-acid battery for the DC power system of nuclear power plant. In addition, correlation between Kt parameter and peukert's exponent of lead-acid battery for nuclear plant are discussed. The analytical results contribute to optimize of determining size Lead-acid battery bank.

Development of Hybrid BMS(Battery Management System) Algorithm for Lead-acid and Lithium-ion battery (연축전지와 리튬이온전지용 하이브리드 BMS 알고리즘 개발)

  • Oh, Seung-Taek;Kim, Byung-Ki;Park, Jae-Beom;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3391-3398
    • /
    • 2015
  • Recently, the large scaled lead-acid battery is widely introduced to efficient operation of the photovoltaic system in many islands. but the demand of lithium-ion battery is getting increased by the operation of wind power and replacement of the lead-acid battery. And also, under the renewable portfolio standard(RPS) and energy efficiency resource standard(EERS) policy of Korea government, the introduction of energy storage system(ESS) has been actively increased. Therefore, this paper presents the operation algorithm of hybrid battery management system(BMS) using the lead-acid and lithium-ion batteries, in order to maximize advantage of each battery. In other words, this paper proposed the algorithm of state of charge(SOC) and hybrid operation algorithm to calculate the optimal composition rate considering the fixed cost and operation cost of each battery. From the simulation results, it is confirmed that the proposed algorithms are an effective tool to evaluate SOC and to optimally operate hybrid ESS.

THE SOC ESTIMATION OF THE LEAD-ACID BATTERY USING KALMAN FILTER

  • JEON, YONGHO
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.5_6
    • /
    • pp.851-858
    • /
    • 2021
  • In general, secondary batteries are widely used as an electric energy source. Among them, the state of energy storage of mobile devices is very important information. As a method of estimating a state, there is a method of estimating the state by integrating the current according to an energy storage state of a battery, and a method of designing a state estimator by measuring a voltage and estimating a charge amount based on a battery model. In this study, we designed the state estimator using an extended Kalman filter to increase the precision of the state estimation of the charge amount by including the error of the system model and having the robustness to the noise.

Characteristic Analysis of Lithium-ion Battery and Lead-acid Battery using Battery Simulator (배터리 시뮬레이터를 이용한 리튬이온 배터리와 납축전지 특성분석)

  • Yongho Yoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.2
    • /
    • pp.127-132
    • /
    • 2024
  • Recently, secondary batteries, commonly known as rechargeable batteries, find widespread applications across various industries. Particularly valued for their compact and lightweight characteristics, they play a crucial role in diverse portable electronic devices such as smartphones, laptops, and tablets, offering high energy density and efficient charge-discharge capabilities. Moreover, they serve as vital components in electric vehicles and contribute significantly to the field of renewable energy as part of Energy Storage Systems(ESS). However, despite advancements in this technology, issues such as reduced lifespan, cracking, damage, and even the risk of fire can arise due to excessive charging and discharging of secondary batteries. To address these challenges, Battery Management System(BMS) are employed to protect against overcharging and improve overall performance. Nevertheless, understanding the protective range settings of BMS using lithium-ion batteries, the most commonly used secondary batteries, and lead-acid batteries can be challenging. Therefore, this paper aims to utilize a battery charge-discharge tester and simulator to investigate the charging and discharging characteristics of lithium-ion batteries and lead-acid batteries, addressing the associated challenges of reduced lifespan, cracking, damage, and fire hazards in secondary batteries.