• Title/Summary/Keyword: Lead Isotope ratios

Search Result 31, Processing Time 0.034 seconds

Accurate Measurement of Isotope Amount Ratios of Lead in Bronze with Multicollector Inductively Coupled Plasma Mass Spectrometry

  • Lee, Kyoung-Seok;Kim, Jin-Il;Yim, Yong-Hyeon;Hwang, Euijin;Kim, Tae Kyu
    • Mass Spectrometry Letters
    • /
    • v.4 no.4
    • /
    • pp.87-90
    • /
    • 2013
  • Isotope amount ratios of lead in a bronze sample have been successfully determined using multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS). Matrix separation conditions were tested and optimized using ion exchange chromatography with anion-exchange resin, AG1-X8, and sequential elution of the 0.5 M HBr and 7 M $HNO_3$ to separate lead from very high contents of copper and tin in bronze matrix. Mercury was also removed efficiently in the optimized separation condition. The instrumental isotope fractionation of lead in the MC-ICP-MS measurement was corrected by the external standard sample bracketing method using an external standard, NIST SRM 981 lead common isotope ratio standard followed by correction of procedure blank to obtain reliable isotope ratios of lead. The isotope ratios, $^{206}Pb/^{204}Pb$, $^{207}Pb/^{204}Pb$, $^{208}Pb/^{204}Pb$, and $^{208}Pb/^{206}Pb$, of lead were determined as $18.0802{\pm}0.0114$, $15.5799{\pm}0.0099$, $38.0853{\pm}0.0241$, and $2.1065{\pm}0.0004$, respectively, and the determined isotope ratios showed good agreement with the reference values of an international comparison for the same sample within the stated uncertainties

Study on the Chemical Composition and Lead Isotope Ratios of Lead Glaze Used on Blue Tiles from Gyeoungbokgung Palace (경복궁 청기와에 사용된 납유의 화학조성과 납동위원소 특성연구)

  • So Jin Kim;Young Do Kim
    • Economic and Environmental Geology
    • /
    • v.57 no.3
    • /
    • pp.343-352
    • /
    • 2024
  • Composition analysis and lead isotope ratio analysis were conducted to determine the coloring machanism on lead glaze used in Gyeongbokgung Palace and the provenance of the lead used as a flux. 31 blue tiles were classified into green, blue, and yellow. The chemical analysis of lead glazes on the blue tiles revealed that Pb, Si, and Cu were the main components, and trace amounts of Fe, Ca, Mg, and Al were detected. The Cu content was high in blue lead glaze, while Cu was not detected in yellow or brown lead glaze which instead had high Fe content. Therefore, it was found that lead was used as a flux and copper oxide as a coloring agent in the production of lead glaze. In addition, the lead isotope ratios of the lead glaze used in the blue tiles of Gyeongbokgung palace were plotted in zone 3 on the distribution map of lead isotope ratios on the Korean Peninsula, which includes Chungcheong-do and Jeolla-do. It is presumed that the flux for the lead glaze was sourced from galena found in these regions. The lead isotope ratios of the green glaze from the Three Kingdoms and Unified Silla period were mostly located outside the Korean Peninsula, showing that the provenance of lead had changed. In particular, the lead isotope ratios of the green glaze from the Three Kingdoms and Unified Silla period suggest exchange with neighboring countries. Also the lead isotope ratios of the green glazes from the same temple are different, so it is believed that they were made at different times or in different workshops.

Chemical Compositions and Lead Isotope Ratios of Some Glass Beads from Seokga-tap, Gyeongju

  • Kang, Hyung-Tae;Yun, Eun-Young
    • Conservation and Restoration of Cultural Heritage
    • /
    • v.1 no.1
    • /
    • pp.3-8
    • /
    • 2012
  • Chemical compositions and lead isotope ratios for four glass bead samples of Seokga-tap were analyzed and the results were organized. Among 4 glass beads found in the Seokga-tap, 3 pieces were lead glass. Manufacturing method was to firstly grind pebbles finely and mix lead ore to be melt at $740{\sim}760^{\circ}C$. The mixed ratio of silica and lead was 3:7. Moreover, The evaluation on the lead isotope ratio indicated that two lead glass pieces used lead ore from northern Korea. One piece has the direction of southern Korea lead ore, but it requires a further review. One glass bead of Seokga-tap was brown and it was potash lead glass ($K_2O-PbO-SiO_2$) System. The mixed ratio was approximately 50:10:40 for silica, natural saltpeter, and lead, respectively. Lead isotope ratio data fell within the lead ore from northern China. Therefore, it was concluded that potash lead glass found in the Seokga-tap was produced in northern area of China at the end of $10^{th}$ century and transferred to the Seokga-tap.

Application of Science for Interpreting Archaeological Materials(II) - Production and Flow of Lead Glass from Mireuksa Temple - (고고자료(考古資料)의 자연과학(自然科學) 응용(應用)(II) - 익산(益山) 미륵사지(彌勒寺址) 납유리(琉璃)의 제조(製造) 및 유통(流通) -)

  • Kang, Hyung-Tae;Kim, Seong-Bae;Huh, Woo-Young;Kim, Gyu-Ho
    • Korean Journal of Heritage: History & Science
    • /
    • v.36
    • /
    • pp.241-266
    • /
    • 2003
  • Glass pieces excavated from Mireuksa Temple dated $7^{th}$ century A.D. were characterized by chemical composition, specific gravity and melting point. Lead isotope ratios of lead glasses were also compared with those of lead ore to attribute which lead ore was delivered for making lead glass. It was known that some lead glasses found in Japan were similar with those of Mireuksa Temple as comparing the data of chemical composition and lead isotope ratios. Characteristics of lead glass from Mireuksa Temple Thirty five glass pieces of Mireuksa Temple were analyzed for five oxides and found that all was lead glass system(PbO-$SiO_2$) with the range of 70~79% for PbO and 20~28% for $SiO_2$. The concentrations of oxides such as $Al_2O_3$, $Fe_2O_3$ and CuO were below 0.4%, 0.3% and 0.9%, respectively. Principal component analysis(PCA) as a statistical method was carried out to classify glasses with the similarities of chemical concentrations. The result of PCA has shown that three groups of glasses were created according to the excavation positions and two major oxides(PbO and $SiO_2$) greatly contributed to the dispersion of glasses on principal component 1(PC1) axis and trace element oxides($Al_2O_3$ and $Fe_2O_3$) for PC2 axis. Most of lead glasses were greenish by the efficacy of iron and copper oxides and some showed yellowish-green. The gravity of lead glasses was about 4.4~5.4 and estimated melting point was near $670^{\circ}C$. Lead isotope ratios of glasses were analyzed and found quite close to a lead ore from the Bupyeong mine in Gyeonggi-do. Comparison with lead glasses found in Japan Lead glasses of Mireuksa Temple were compared with those of Japan on the basis of chemical and physical data. Chemical compositions of Japanese lead glasses dated $7^{th}{\sim}8^{th}$ century A.D. were nearly similar with those of Mireuksa Temple but lead isotope ratios of those were separated into two groups. Three distribution maps of lead ores of Korea, Japan and China with lead isotope ratios were applied for lead glasses found in Japan. The result have shown that the locations of lead glasses from Fukuoka Prefecture coincided with the region of northen part of Korea and similar with those of Mireuksa Temple and lead glasses from Nara Prefecture dated $8^{th}$ century A.D. were located in the region of Japanese lead ore. This research has demonstrated that lead glasses of Mireuksa Temple conveyed to Miyajidake site, Fukuoka Prefecture around $7^{th}$ century A.D. and glass melting pots and glass beads excavated from Nara Prefecture confirmed the first use of Japanese lead ore for production of lead glasses from the end of $7^{th}$ century A.D.

Investigation of Lead Isotope Ratios on Lead Artifacts Excavated from Mireuk Temple Site, Iksan (익산 미륵사지 출토 납제품의 납동위원소비 분석 고찰)

  • No, Ji-Hyun;Hirao, Yoshimitsu;Kim, Gyu-Ho;Noh, Gi-Hwan
    • 보존과학연구
    • /
    • s.30
    • /
    • pp.137-147
    • /
    • 2009
  • Mireuk temple site is located in Iksan, on the North Jeolla province in Korea, and confirmed tiles, potteries, metals, glasses and other materials that are remaining between Baekje Kingdom and Joseon period after excavations. It is also detected that production and supply of the materials in this era were started inside the country(domestic) at that time. This is important information for the understanding of the production and circulation systems. In this study, lead isotope ratios of 18 samples includedlead glass, crucibles and glazed rafter tiles excavated from Mireuk Temple Site of Baekje era were analyzed for the provenance study of raw glass material supply and distribution of glass products. The results of lead isotope ratio analysis have shown that all raw materials were located in the distribution area of Baekje region and also confirmed to be accord with the previous research results. As comparing the lead isotope ratios of glass and glass materials excavated from Mireuk Temple Site with Miyajidake tomb from Fukuoka Prefecture in Japan, it is found that the same raw materials were used for glass production. It means that there is the active connection between Mireuk temple site and Miyajidake and that these areas are sharing the same materials at the same period. It also shown that artifacts excavated from Miyajidake were strongly influenced from Baekje culture. And it is estimated that there is a possibility of the use ofsame materials whether the supplies of them are from a specific place of Baekje or not

  • PDF

Evaluation of Airborne Pb Sources in an Industrialized City by Applying Pb Isotope Ratios and Concentrations in PM10 (PM10 내 납의 동위원소와 농도를 활용한 산업도시지역 대기 중 납 오염원 평가)

  • Jo, Wan-Kuen;Lee, Heon-Chul;Kim, Mo-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.3
    • /
    • pp.174-182
    • /
    • 2011
  • The present study evaluated the major lead sources in a steel metallurgy industrialized city by measuring lead isotopes/lead concentrations of ambient air and potential sources in an industrial area and residential areas according to relative distance. The quality control program obtained during the measurement procedure for lead isotopes and concentrations exhibited $0.5ng/m^3$ for method detection limit, more than 90% for recoveries of standard particulate matters, and lower than 0.2% for reproducibility errors of four lead isotopes ($^{204}Pb$, $^{206}Pb$, $^{207}Pb$, $^{208}Pb$). For all three lead isotope ratios ($^{206}Pb/^{204}Pb$, $^{207}Pb/^{206}Pb$, $^{208}Pb/^{206}Pb$), the ratios were obtained in the industrial area were closer to nearby residential area than those of a residential area far away from the industrial area, thereby suggesting that lead sources were more similar each other in the industrial and nearby residential area. Furthermore, for both summer and winter seasons ambient lead concentrations were more than four times higher in the industrial area than in the residential areas and in turn, they were higher in the nearby residential area compared with the far-away residential area. As a result, it was suggested that lead emitted from the industrial area would influence more the ambient lead in the nearby residential area than the far-away residential area. Both slag and traffic emissions are likely to be major lead sources in the industrial and nearby residential areas, since their three lead isotope ratios ($^{206}Pb/^{204}Pb$, $^{207}Pb/^{206}Pb$, $^{208}Pb/^{206}Pb$) were similar to the ratios obtained from ambient air of these two areas. In addition, the lead isotope ratios revealed different pattern between seasons, and the ambient lead concentrations were higher for winter than for summer.

Provenance Study on Ancient Lead Glass Relics Using a Lead Isotope Ratio (납동위원소비를 이용한 고대 납유리 유물의 산지추정)

  • Han, Min Su;Kim, So Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.187-193
    • /
    • 2015
  • The purpose of the present study is to trace the provenance of lead raw materials using the lead isotope ratio of 9 lead glasses excavated from the Sarira hole of Mireuksaji stone pagoda and to determine correlation between them and other lead glasses excavated from the Wanggungri site. The results of chemical analysis of the 9 lead glasses show that they are common lead glass system($PbO-SiO_2$) with respect to the contents of PbO (70 wt.%) and $SiO_2$ (30 wt.%). The lead isotope ratios of them plot to northern Korean peninsula when applied to the distribution map of lead isotopes of East Asia. On the other hand, southern Korean peninsula is verified as the main deposits of the lead ore in the distribution map of lead isotopes of South Korea. With respect to the results, it is notable that the provenance of the 9 lead glasses can be very different depending on the distribution map. In addition, a comparative study between them and the lead glasses excavated from the Wanggungri which was built in the same region and period shows that their lead isotopes are highly correlated.

Characteristics of Lead isotope ratios and Trace elements of Excavated Bronze weapons in Pre-historical Age (선사시대 출토 청동 무기류의 납동위원소비 및 미량원소 특성)

  • Kim, So Jin;Hwang, Jin Ju;Han, Woo Rim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.4
    • /
    • pp.219-226
    • /
    • 2021
  • We examined component analysis and lead isotope ratio analysis to find out the relationship between the excavation and the production site of 25 bronze weapons from prehistoric ages. All 25 bronze weapons are ternary alloys of copper-tin-lead and lead is artificially added. The lead isotope ratios of 25 bronze weapons show that bronze are made by raw materials in the southern regions of the Korean Peninsula, including northern China. The raw materials of narrow-shaped bronze dagger are supplied in zone 1-3 and northern China. In addition, provenance of lead for bronze halberd and pearhead are the rest of the region except for zone 1 and zone 4. Silver are enriched in most samples and zinc and cobalt are deficient. Arsenic and antimony detected only specific samples and can be used as critical parameter for provenance study. Lead isotopes and trace elements of archaeological bronzes will provide conservation scientist with useful tool to study the provenance of raw materials

Raw Material and Provenance of Chosen-Tongbo (I) (조선통보의 주조원료와 산지 연구(I))

  • Kang, Hyung Tae;Kim, Gyu Ho;Huh, Woo Young;Hirao, Yoshimitsu
    • Journal of Conservation Science
    • /
    • v.16 s.16
    • /
    • pp.15-20
    • /
    • 2004
  • Two pieces of choson-Tongue(朝鮮通寶) minted at 1423 A.D. were analyzed by atomic absorption spectroscopy and neutron activation analysis. The measurement of lead isotope ratios was also carried out in order to predict the provenance of raw materials used for minting. The Chosen-Tongue was minted as bronze having the chemical compositions of $Cu\;90\%,\;Pb\;3\~4\%,\;Sn\;2\~3\%$, which were different from the typical composition of Chinese and Japanese coins. The results of lead isotope ratios showed that the provenance of raw materials used for minting had a possibility to be originated from South China. And application of statistical linear discriminant analysis (SLDA) to the provenance of lead used for minting of Chosen-Tongue was confirmed.

  • PDF