DOI QR코드

DOI QR Code

Evaluation of Airborne Pb Sources in an Industrialized City by Applying Pb Isotope Ratios and Concentrations in PM10

PM10 내 납의 동위원소와 농도를 활용한 산업도시지역 대기 중 납 오염원 평가

  • Jo, Wan-Kuen (Department of Environmental Engineering, Kyungpook National University) ;
  • Lee, Heon-Chul (Department of Environmental Engineering, Kyungpook National University) ;
  • Kim, Mo-Keun (Department of Environmental Engineering, Kyungpook National University)
  • 조완근 (경북대학교 환경공학과) ;
  • 이현철 (경북대학교 환경공학과) ;
  • 김모근 (경북대학교 환경공학과)
  • Received : 2011.01.31
  • Accepted : 2011.03.24
  • Published : 2011.03.31

Abstract

The present study evaluated the major lead sources in a steel metallurgy industrialized city by measuring lead isotopes/lead concentrations of ambient air and potential sources in an industrial area and residential areas according to relative distance. The quality control program obtained during the measurement procedure for lead isotopes and concentrations exhibited $0.5ng/m^3$ for method detection limit, more than 90% for recoveries of standard particulate matters, and lower than 0.2% for reproducibility errors of four lead isotopes ($^{204}Pb$, $^{206}Pb$, $^{207}Pb$, $^{208}Pb$). For all three lead isotope ratios ($^{206}Pb/^{204}Pb$, $^{207}Pb/^{206}Pb$, $^{208}Pb/^{206}Pb$), the ratios were obtained in the industrial area were closer to nearby residential area than those of a residential area far away from the industrial area, thereby suggesting that lead sources were more similar each other in the industrial and nearby residential area. Furthermore, for both summer and winter seasons ambient lead concentrations were more than four times higher in the industrial area than in the residential areas and in turn, they were higher in the nearby residential area compared with the far-away residential area. As a result, it was suggested that lead emitted from the industrial area would influence more the ambient lead in the nearby residential area than the far-away residential area. Both slag and traffic emissions are likely to be major lead sources in the industrial and nearby residential areas, since their three lead isotope ratios ($^{206}Pb/^{204}Pb$, $^{207}Pb/^{206}Pb$, $^{208}Pb/^{206}Pb$) were similar to the ratios obtained from ambient air of these two areas. In addition, the lead isotope ratios revealed different pattern between seasons, and the ambient lead concentrations were higher for winter than for summer.

본 연구는 제철 산업지역과 이 지역으로 부터 이격거리가 다른 주거지역들의 대기 및 잠재적 오염원의 납 동위원소/대기 중 납 농도를 측정하여 제철 산업도시 대기 중 납의 주요 오염원을 평가하였다. 대기 중 납 농도와 납 동위원소비 측정과정에서 수행한 자료의 질 관리 프로그램에서 결정된 납의 검출한계는 $0.5ng/m^3$ 이하, 표준 입자상물질의 회수율은 90% 이상 그리고 4종류 납 동위원소($^{204}Pb$, $^{206}Pb$, $^{207}Pb$, $^{208}Pb$) 분석의 재현성 오차가 모두 0.2% 이하이었다. 3종류 동위원소비($^{206}Pb/^{204}Pb$, $^{207}Pb/^{206}Pb$, $^{208}Pb/^{206}Pb$ 모두에 대해서 산업지역에서 측정된 값은 이 지역과 멀리 떨어진 주거지역 측정값보다 인접한 주거지역 측정값과 가까워, 산업지역과 인접 주거지역 납의 오염원이 보다 유사한 것으로 나타났다. 나아가, 여름과 겨울 두 계절에 대하여, 주거지역들보다는 산업지역에서 납 농도가 4배 이상 높게 나타났고, 주거지역 중에서도 인접 주거지역에서 납 농도가 높게 나타났기 때문에, 산업지역에서 배출된 납이 인접 주거지역에 더 많은 영향을 미친 것으로 사료되었다. 산업지역에서 조사된 3종류 납 동위원소비($^{206}Pb/^{204}Pb$, $^{207}Pb/^{206}Pb$, $^{208}Pb/^{206}Pb$)가 8종류 잠재적 오염원 중에서 슬래그와 자동차 배출가스의 값과 유사하게 나타나, 이들 오염원이 산업지역과 인접 주거지역 납의 주요 오염원으로 추정된다. 또한, 산업지역과 주거지역들의 납 동위원소비가 계절적으로 다른 양상을 나타내었고, 납 농도는 여름보다 겨울에 높게 나타났다.

Keywords

References

  1. 한지현, 이미혜, 김영성, "전국 도시대기 측정망의 2000-2005년 PM10 농도 군집분석," 한국대기환경학회지, 24, 300-309(2008).
  2. Anderson, C., Bergström, R. and Johansson, C., "Population exposure and mortality due to regional background PM in Europe - Long-term simulations of source region and shipping contributions," Atmos. Environ., 43, 3614-3620(2009). https://doi.org/10.1016/j.atmosenv.2009.03.040
  3. Polichetti, G., Cocco, S., Spinali, A., trimarco, V., Nunziata, A., "Effects of particulate matter (PM10, PM2.5 and PM1) on the cardiovascular system," Toxicology, 261, 1-8 (2009). https://doi.org/10.1016/j.tox.2009.04.035
  4. Boogaard, H., Montagne, D. R., Brandenburg, A. P., Meliefste, K., Hoek, G., "Comparison of short-term exposure to particle number, PM10 and soot concentrations on three (sub) urban locations," Sci. Total Environ., 408, 4403-4411(2010). https://doi.org/10.1016/j.scitotenv.2010.06.022
  5. 정장표, 이승묵, 윤항묵, "부산시 PM10의 화학적성분에 대한 낮과 밤의 농도 특성," 대한환경공학회지, 23(3), 353-362 (2001).
  6. 진윤하, 구해정, 김봉만, 김용표, 박순웅, "한반도 11개 도시의 1995-2000년 PM10 농도 변화 경향," 한국대기환경학회지, 19(2), 231-245(2003).
  7. 임종명, 이진홍, 정용삼, "대기입자 중 미량원소의 정량을 위한 기기 중성자방사화분석과 유도결합플라즈마 질량분석법의 비교 평가," 대한환경공학회지, 28(10), 1038-1045(2006).
  8. 정진도, 황승민, 최희석, "아산지역의 황사/비황사시 PM2.5, PM10 농도측성에 관한 연구," 대한환경공학회지, 30(11), 1111-1115(2008).
  9. Lim, J. M., Lee, J. H., Moon, J. H., Chung, Y. S. and Kim, K. H., "Source apportionment of PM10 at a small industrial area using Positive Matrix Factorization," Atmos. Res., 95, 88-100(2010). https://doi.org/10.1016/j.atmosres.2009.08.009
  10. Pey, J., Alastuey, A., Querol, X. and Rodríguez, S., "Monitoring of sources and atmospheric processes controlling air quality in an urban Mediterranean environment," Atmos. Environ., 44, 4879-4890(2010). https://doi.org/10.1016/j.atmosenv.2010.08.034
  11. Rimetz-Planchon, J., Perdrix, E., Sobanska, S. and Bremard, C., "PM10 air quality variations in an urbanized and industrialized harbor," Atmos. Environ., 42, 7274-7283(2008). https://doi.org/10.1016/j.atmosenv.2008.07.005
  12. Gladtke, D., Volkhausen, W. and Bach, B., "Estimating the contribution of industrial facilities to annual PM10 concentrations at industrially influenced sites," Atmos. Environ., 43, 4655-4665(2009). https://doi.org/10.1016/j.atmosenv.2009.04.063
  13. Minguillon, M. C., Querol, X., Alastuey, A., Monfort, E., Mantilla, E., Sanz, M.J., Sanz, F., Roig, A., Renau, A., Felis, C., Miro, J. V. and Artinano, A., "PM10 speciation and determination of air quality target levels. A case study in a highly industrialized area of Spain," Sci. Total Environ., 372, 382-396(2007). https://doi.org/10.1016/j.scitotenv.2006.10.023
  14. Weitkampa, E. A., Lipskya, E. M., Pancras, P. J., Ondov, J. M., Polidori, A., Turpin, B. J. and Robinson, A. L., "Fine particle emission profile for a large coke production facility based on highly time-resolved fence line measurements," Atmos. Environ., 39, 6719-6733(2005). https://doi.org/10.1016/j.atmosenv.2005.06.028
  15. Norgate, T. E., Jahanshahi, S. and Rankin, W. J., "Assessing the environmental impact of metal production processes," J. Clean. Product., 15, 838-848(2007). https://doi.org/10.1016/j.jclepro.2006.06.018
  16. Gulson, B, Korsch, M., Dickson, B., Cohen, D., Mizon, K. and Davis, J. M., "Comparison of lead isotopes with source apportionment models, including SOM, for air particulates," Sci. Total Environ., 381, 169-179(2007). https://doi.org/10.1016/j.scitotenv.2007.03.018
  17. Widory, D., Liu, X. and Dong, S., "Isotopes as tracers of sources of lead and strontium in aerosols (TSP & PM2.5) in Beijing," Atmos. Environ., 44, 3679-3687(2010). https://doi.org/10.1016/j.atmosenv.2010.06.036
  18. Komárek, M., Ettler, V., Chrastny, V. and Mihaljevič, M., "Lead isotopes in environmental sciences: A review," Environ. Int., 34, 562-577(2008). https://doi.org/10.1016/j.envint.2007.10.005
  19. Sangster, D., Outridge, P. M. and David, W. J., "Lead isotope characteristics of global lead ore deposits of environmental significance," Environ. Res., 8, 115-147(2000).
  20. Sun, Y., Zhuang, G., Zhang, W., Wang, Y. and Zhuang, Y., "Characteristics and sources of lead pollution after phasing out leaded gasoline in Beijing," Atmos. Environ., 40, 2973-2985(2006). https://doi.org/10.1016/j.atmosenv.2005.12.032
  21. Geagea, M. L., Stille, P., Gauthier-Lafaye, F. and Millet, M., "Tracing of industrial aerosol sources in an urban environment using Pb, Sr, and Nd isotopes," Environ. Sci. Technol., 42, 692-698(2008). https://doi.org/10.1021/es071704c
  22. Mukai, H., machida, T., Tanaka, A., Vera, Y. P. and Uematsu, M., "Lead isotope ratios in the urban air of eastern and central Russia," Atmos. Environ., 35, 2783-2793(2001). https://doi.org/10.1016/S1352-2310(00)00341-1
  23. Longrich, H. P., Fryer, B. J. and Strong, D. F., "Determination of lead isotope ratios by inductively coupled plasmamass spectrometry (ICP-MS)," Spectrochim. Acta, 428, 39-48(1987).
  24. Margui, E., Iglesias, M., Queralt, I. and Hidalgo, M., "Lead isotope ratio measurements by ICP-QMS to identify metal accumulation in vegetation specimens growing in mining environments," Sci. Total Environ., 367, 988-998(2006). https://doi.org/10.1016/j.scitotenv.2006.03.036
  25. Lee, C. S. L., Li, X. -D., Zhang, G., Li, Jun, Ding, A. -J. and Wang, T., "Heavy metals and Pb isotopic composition of aerosols in urban and suburban areas of Hong Kong and Guangzhou, South China-Evidence of the long-range transport of air contaminants," Atmos. Environ., 41, 432-447(2007). https://doi.org/10.1016/j.atmosenv.2006.07.035
  26. Vassilakos, Ch., Veros, D., Michopoulos, J., Maggos, Th. and O'Connor, C. M., "Estimation of selected heavy metals and arsenic in PM10 aerosols in the ambient air of the Greater Athnes Area, Greece," J. Hazard. Mater., 140, 389-398 (2007). https://doi.org/10.1016/j.jhazmat.2006.11.002
  27. Alleman, L. Y., Lamaison, L., Perdrix, E., Robache, A. and Galloo, J. -C., "PM10 metal concentrations and source identification using positive matrix factorization and wind sectoring in a French industrial zone," Atmos. Environ., 96, 612-625(2010).
  28. Zheng, J., Tan, M., Shibata, Y., Tanaka, A., Li, Y., Zhang, G., Zhang, Y. and Shan, Z., "Characteristics of lead isotope ratios and elemental concentrations in PM10 fraction of airborne particulate matter in Shanghai after the phase-out of lead gasoline," Atmos. Environ., 38, 1191-1200(2004). https://doi.org/10.1016/j.atmosenv.2003.11.004
  29. Hansmann, W. and Koppel, V., "Lead-isotopes as tracers of pollutants in soil," Chem. Geol., 171, 123-144(2000). https://doi.org/10.1016/S0009-2541(00)00230-8

Cited by

  1. Analytical methods for atmospheric particulate aerosols: Focused on the physical properties and chemical composition of metals and water soluble ionic compounds vol.28, pp.3, 2015, https://doi.org/10.5806/AST.2015.28.3.139