DOI QR코드

DOI QR Code

Accurate Measurement of Isotope Amount Ratios of Lead in Bronze with Multicollector Inductively Coupled Plasma Mass Spectrometry

  • Lee, Kyoung-Seok (Korea Research Institute of Standards and Science (KRISS)) ;
  • Kim, Jin-Il (Korea Research Institute of Standards and Science (KRISS)) ;
  • Yim, Yong-Hyeon (Korea Research Institute of Standards and Science (KRISS)) ;
  • Hwang, Euijin (Korea Research Institute of Standards and Science (KRISS)) ;
  • Kim, Tae Kyu (Department of Chemistry, Pusan National University)
  • Received : 2013.12.13
  • Accepted : 2013.12.19
  • Published : 2013.12.30

Abstract

Isotope amount ratios of lead in a bronze sample have been successfully determined using multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS). Matrix separation conditions were tested and optimized using ion exchange chromatography with anion-exchange resin, AG1-X8, and sequential elution of the 0.5 M HBr and 7 M $HNO_3$ to separate lead from very high contents of copper and tin in bronze matrix. Mercury was also removed efficiently in the optimized separation condition. The instrumental isotope fractionation of lead in the MC-ICP-MS measurement was corrected by the external standard sample bracketing method using an external standard, NIST SRM 981 lead common isotope ratio standard followed by correction of procedure blank to obtain reliable isotope ratios of lead. The isotope ratios, $^{206}Pb/^{204}Pb$, $^{207}Pb/^{204}Pb$, $^{208}Pb/^{204}Pb$, and $^{208}Pb/^{206}Pb$, of lead were determined as $18.0802{\pm}0.0114$, $15.5799{\pm}0.0099$, $38.0853{\pm}0.0241$, and $2.1065{\pm}0.0004$, respectively, and the determined isotope ratios showed good agreement with the reference values of an international comparison for the same sample within the stated uncertainties

Keywords

References

  1. Cohen, E. R.; Cvitas, T.; Frey, J. G.; Holmstrom, B.; Kuchitsu, K.; Marquardt, R.; Mills, I.; Pavese, F.; Quack, M.; Stohner, J.; Strauss, H. L.; Takami, M.; Thor, A. J. Quantities, Units and Symbols in Physical Chemistry, IUPAC Green Book, 3rd Ed., 2nd Printing, IUPAC & RSC Publishing, Cambridge, 2008.
  2. Vanhaecke, F.; Degryse, P. Isotopic Analysis: Fundamentals and Applications Using ICP-MS, Wiley-VCH Verlag & Co. KGaA, Weinheim, Germany, 2012.
  3. Balcaen, L.; Moens, L.; Vanhaecke, F. Spectrochim. Acta, Part B 2010, 65, 769. https://doi.org/10.1016/j.sab.2010.06.005
  4. Cheng, H.; Hu, Y. Environmental Pollution 2010, 158, 1134. https://doi.org/10.1016/j.envpol.2009.12.028
  5. Diaz-Somoano, M.; Kylander, M. E.; Lopez-Anton, M. A.; Suarez-Ruiz, I.; Martinez-Tarazona, M. R.; Ferrat, M.; Kober, B.; Weiss, D. J. Environ. Sci. Technol. 2009, 43, 1078. https://doi.org/10.1021/es801818r
  6. Heumann, K. G.; Gallus, S. M.; Radlinger, G.; Vogl, J. J. Anal. At. Spectrom. 1998, 13, 1001. https://doi.org/10.1039/a801965g
  7. Albarede, F.; Beard, B. Reviews in Mineralogy & Geochemistry 2004, 55, 113. https://doi.org/10.2138/gsrmg.55.1.113
  8. Yang, L. Mass Spectrom. Rev. 2009, 28, 990. https://doi.org/10.1002/mas.20251
  9. Weyer, S.; Schwieters, J. Int. J. Mass Spectrom. 2003, 226, 355. https://doi.org/10.1016/S1387-3806(03)00078-2
  10. Andersen, T.; Knutsen, A. B. Acta Chemica Scandinavica 1962, 16, 849. https://doi.org/10.3891/acta.chem.scand.16-0849
  11. Strelow, F. W. E.; Toerien, F. S. Anal. Chem. 1966, 38, 545. https://doi.org/10.1021/ac60236a006
  12. Guide to the Expression of Uncertainty in Measurement. International Organization for Standardisation (ISO), Geneva, 1995.