• Title/Summary/Keyword: Lead Beads

Search Result 38, Processing Time 0.024 seconds

기능성기를 지닌 고분자 자성체를 이용한 수용액 중 납이온 추출

  • 서형석;최규찬;나인욱;황경엽
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.175-176
    • /
    • 2004
  • To develope of efficient method for decontaminating of lead ions from industrial wastewater, treatment of aqueous lead solution with magnetic beads was investigated. Immobilization of carboxyl groups on tile surface of magnetic beads was carried out to introduce chelate effect between lead ions and beads. Experiments were performed with lead solutions and magnetic beads at pH 6. Lead ions were extracted during 1 hour, After extraction, magnetic beads were separated from water by outer magnetic force and the solution was analysed by atomic absorption spectroscopy (AAS). Over 90 % of lead ions could be removed from aqueous solution after beads application. This result indicate that magnetic beads can be used as a efficient method for removing lead ions from industrial wastewater.

  • PDF

Analysis of Mobile Lead in Soil Using Carboxylated Magnetic Particle

  • So, Hyung-Suk;Shin, Hyun-Chul;Yoo, Yeong-Seok;Schaeffer Andreas
    • Journal of Magnetics
    • /
    • v.10 no.3
    • /
    • pp.89-92
    • /
    • 2005
  • The analytic possibility of mobile lead contained in soil has been studied using carboxylated magnetic beads. Extraction of heavy metal was performed to contaminated soil that has been collected and supplied for tests. As experiment materials, soil sample, distilled water and magnetic beads were only used. It means that the lead was extracted under neutral condition. In this condition, only the mobile fraction of lead could be extracted by magnetic beads. The mobile lead in the soil was quickly combined with magnetic beads in the mixture process. Then, the magnetic beads were dissolved into acids after collection by external magnetic force, and the lead combined with the beads was eluted and analyzed by Graphite Furnace Atomic Absorption Spectroscopy (GFAAS). In the results of extraction experiments for 3 sandy soils, the efficiency using beads was similar to or higher than that of EDTA (Ethylendiamintetraacetic acid), which is normally used for analyzing mobile heavy metal concentration in soil. With this, it was shown that this method is a more accurate and simple method to analyze mobile lead when analyzing mobile heavy metal concentration in sandy soil, rather than conventional method using EDTA.

Removal Characteristics of Lead by Immobilizing Agents and Immobilized Seaweed (고정화제와 고정화된 해조류에 의한 납의 제거 특성)

  • 이학성;서정호;서근학
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.1
    • /
    • pp.83-87
    • /
    • 2001
  • In this study, the characteristics of lead removal by PVA and alginate bead which used widely as immobilizing agents were investigated, and the difference of removal amounts between pure PVA/alginate bead and Sargassum thunbergii immobilized bead was studied. All PVA beads, pure and S. thunbergii immobilized, reached an equilibrium state in about 1 hour, and S. thunbergii immobilized bead adsorbed more lead than pure one. But in the case of alginate beads, they needed much time, about 5 hours, to reach an equilibrium state, and adsorbed lead four times higher than PVA beads. Therefore, it was considered that alginate beads had more mass transfer resistance and function groups which adsorb lead such as hydroxyl, carboxyl and etc. than PVA bead. To examine the continuous usage of alginate beads, the process of adsorption/desorption of lead was conducted repeatedly. As the process proceeded, the amounts of lead adsorption decrease, so it was indicated that the non-desorbed lead from alginate bead at first adsorption/desorption process remained constantly.

  • PDF

Lead Biosorption by Alginate Beads Immobilizing Aspergillus niger (Aspergillus niger를 고정화한 Alginate Bead에 의한 납 흡착)

  • Bang, Byung-Ho
    • Applied Biological Chemistry
    • /
    • v.44 no.3
    • /
    • pp.185-190
    • /
    • 2001
  • Alginate, a well-known biopolymer, is universally applied for immobilization of microbial cells. Biosorption characteristics of lead by waste biomass of immobilized A. niger beads, used in fermentation industries to produce citric acid, were studied. The immobilized A. niger beads, prepared via capillary extrusion method using calcium chloride, were applied in the removal of lead. Pb uptake was the highest in A. niger beads cells grown for 3 days with medium producing citric acid (12% sucrose, 0.5% $NH_4NO_3$, 0.1% $KH_2PO_4$, and 0.025% $MgSO_4$). Lead uptake by the immobilized A. niger beads and free A. niger mycellia beads increased sharply with time. However, while uptake by the immobilized A. niger beads continued to increase slowly, that by free A. niger mycellia beads stopped after 30 min. The optimum pH and temperature of lead uptake were found to be 6 and $35^{\circ}C$, respectively. The maximum uptake of lead was achieved with $50{\sim}100$ beads and 50 ml lead solution in a 250-ml Erlenmeyer flask, while, at over 100 beads, uptake of the lead decreased. The order of biosorption capacity for heavy metals was Pb>Cu>Cd. Pb uptake capacity of the immobilized A. niger beads treated with 0.1 M $CaCI_2$, 0.1 M NaOH, and 0.1 M KOH decreased compared to the untreated beads. On testing the desorption of Pb from the immobilized A. niger beads, re-uptake of Pb was found possible after desorption of the binding metal with 0.1 M HCI.

  • PDF

Manufacturing Technology and Provenance of the Lead Beads (납환의 제작방법 및 납동위원소비 특성 연구)

  • Kim, So-jin;Hwang, Jin-ju;Han, Woo-rim;Lee, Eun- woo;Rim, Seok-gyu;Jeong, Youn-joong
    • Korean Journal of Heritage: History & Science
    • /
    • v.47 no.4
    • /
    • pp.48-57
    • /
    • 2014
  • More than 30 lead beads have been excavated from buddhist temples and sites but the production times are unknown the origin. The aim of this study is to estimate manufacturing technique and provenance of 11 beads through the chemical composition and isotope analysis. Results shows that the lead beads are composed of high-purity lead and cast using for 2 semicircle moulds. Furthermore, 11 lead beads are similar in size, chemical composition and casting methods. Lead isotope analysis data suggest that the provenance of lead beads are not Korea peninsula. Also it is estimated that 11 lead beads were divided in 2 groups considering the time and places of production. The future works will be executed additional scientific analysis and historical background due to confirm the manufacturing system and provenance.

A Study on the Provenance of an Opacifying Agent(PbSnO3) in Yellow and Green Glass Beads Excavated from the Korean Peninsula

  • Yu, Heisun;Ro, Jihyun
    • Journal of Conservation Science
    • /
    • v.34 no.4
    • /
    • pp.305-311
    • /
    • 2018
  • The yellow crystalline material present in yellow and green glass beads excavated from sites in the Baekje region of Korea was previously analyzed through scanning electron microscopy with energy dispersive spectroscopy and X-ray diffraction, revealing that the yellow crystalline material was $PbSnO_3$. This material is a pigment that is rarely seen in the Korean peninsula. Furthermore, some studies have been published on the provenance of lead in this material, which revealed no relationship to Korea, China, or Japan. In this study, we collected all accessible results of analyses on the lead isotope ratio of yellow and green glass beads excavated from the Korean peninsula, specifically from 7 sites in the Baekje region(located in the vicinity of Seoul, Wanju, Hwaseong, Osan, Gongju, Buyeo, and Iksan) and 2 sites in the Silla region(located in the vicinity of Gyeongju and Changnyeong). We subsequently investigated the lead provenance of the opacifying agents in the glass beads through comparison with the current extent of the galena data accumulated for the East Asian region, including Korea, China, and Japan, and for Thailand(Kanchanaburi Province), Southeast Asia. Our analysis determined that the lead provenance of the glass beads excavated from the Korean peninsula was Thailand(Kanchanaburi Province). Beyond our results, further studies should seek to determine the production sites of the glass beads. Obtaining and comparing the scientific analyses of glass beads from India and Southeast Asia would enable research on the glass beads trade through the maritime silk road.

Chemical Composition and Lead Isotope Ratio of Glass Beads Excavated from Eunpyeong Newtown Site (은평 뉴타운 유적 출토 유리구슬의 성분조성과 납동위원소비)

  • Kang, Hyung-Tae;Cho, Nam-Chul;Han, Min-Su;Kim, Woo-Hyun;Hong, Ji-Youn
    • Journal of Conservation Science
    • /
    • v.25 no.3
    • /
    • pp.335-345
    • /
    • 2009
  • This paper presents investigations on 60 glass beads excavated from floorless tombs of Eunpyeong Newtown site to figure out composition and lead isotope ratio by SEM-EDS and TIMS, which show the difference between their compositions and Pb provenance of lead glass. The results of the composition analysis are that excavated glass are mainly divided into Potash glass($K_2O$-CaO-$SiO_2$) and Potash-lead glass($K_2O$-PbO-$SiO_2$) and the samples excavated from III-3 floorless tombs No.1005 are presumed not glass but Quartz. The transparent 9 lead glasses excavated from II-3 floorless tomb No.101 and III-3 floorless tomb No.908 seem to be manufactured by the same raw material at same site because the concentration of their compositions are well accorded with each other and deviations of them are very limited. As a result of principal component analysis(PCA), glass beads excavated are largely assort to two groups, Potash glass and Potash lead glass as well. That is, glass beads excavated from Eunpyeoung Newtown sites are quite different two types of main composition. In addition, the results of Pb provenance analysis used in lead glass confirm that most lead glass are significantly correlated with galena of northern China.

  • PDF

Chemical Compositions and Lead Isotope Ratios of Some Glass Beads from Seokga-tap, Gyeongju

  • Kang, Hyung-Tae;Yun, Eun-Young
    • Conservation and Restoration of Cultural Heritage
    • /
    • v.1 no.1
    • /
    • pp.3-8
    • /
    • 2012
  • Chemical compositions and lead isotope ratios for four glass bead samples of Seokga-tap were analyzed and the results were organized. Among 4 glass beads found in the Seokga-tap, 3 pieces were lead glass. Manufacturing method was to firstly grind pebbles finely and mix lead ore to be melt at $740{\sim}760^{\circ}C$. The mixed ratio of silica and lead was 3:7. Moreover, The evaluation on the lead isotope ratio indicated that two lead glass pieces used lead ore from northern Korea. One piece has the direction of southern Korea lead ore, but it requires a further review. One glass bead of Seokga-tap was brown and it was potash lead glass ($K_2O-PbO-SiO_2$) System. The mixed ratio was approximately 50:10:40 for silica, natural saltpeter, and lead, respectively. Lead isotope ratio data fell within the lead ore from northern China. Therefore, it was concluded that potash lead glass found in the Seokga-tap was produced in northern area of China at the end of $10^{th}$ century and transferred to the Seokga-tap.

Applicability of Composite Beads, Spent Coffee Grounds/Chitosan, for the Adsorptive Removal of Pb(II) from Aqueous Solutions

  • Choi, Hee-Jeong
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.536-545
    • /
    • 2019
  • An experiment was conducted to evaluate the adsorptive removal of Pb(II) from an aqueous solution using a mixture of spent coffee grounds and chitosan on beads (CC-beads). Various parameters affecting the adsorption process of Pb(II) using CC-beads were investigated. Based on the experimental data, the adsorption kinetics and adsorption isotherms were analyzed for their adsorption rate, maximum adsorption capacity, adsorption energy and adsorption strength. Moreover, the entropy, enthalpy and free energy were also calculated by thermodynamic analysis. According to the FT-IR analysis, a CC-bead has a very suitable structure for easy heavy metal adsorption. The process of adsorbing Pb(II) using CC-beads was suitable for pseudo-second order kinetic and Langmuir model, with a maximum adsorption capacity of 163.51 (mg/g). The adsorption of Pb(II) using CC-beads was closer to chemical adsorption than physical adsorption. In addition, the adsorption of Pb(II) on CC-beads was exothermic and spontaneous in nature. CC-beads are economical because they are inexpensive and also the waste can be recycled, which is very significant in terms of the continuous circulation of resources. Thus, CC-beads can compete with other adsorbents.

Compositions and Characteristics on the Glass Beads from Jeongjang?ri Site in Geochang, Korea (거창 정장리 유적 출토 유리구슬의 화학 조성과 특징)

  • Yun, Ji Hyeon;Kim, Gyu Ho
    • Journal of Conservation Science
    • /
    • v.32 no.1
    • /
    • pp.63-73
    • /
    • 2016
  • This study defined material and characteristics of 24 glass fragments and 26 whole glass beads. The feature of glass beads shape are divided into 5 types following color, size, weathering condition and manufacturing techniques. Through the chemical composition, the first and second type is soda glass, the third type is potash glass, the fourth and fifth type is lead barium glass. This site showed the aspect that the chemical composition is changed according to the feature of glass shape and was found that various chemical compositions. Looking at the flow of glass culture, the tomb that are lead barium glass IItype and potash glass I, IItype is relatively preceding period and the tomb that are soda glass and lead barium glass IIItype is following period.