• Title/Summary/Keyword: Leaching resistance

Search Result 56, Processing Time 0.023 seconds

Polyvinylchloride Plasticized with Acetylated Monoglycerides Derived from Plant Oil (아세틸화 모노글리세라이드계 가소제 합성 및 PVC 가소성능에 관한 연구)

  • Lee, Sangjun;Yuk, Jeong-Suk;Kim, A-Ryeon;Choung, Ji Sun;Shin, Jihoon;Kim, Young-Wun
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.42-49
    • /
    • 2017
  • To replace phthalate plasticizer for PVC, acetylated monoglyceride (AMG) plasticizers were prepared from plant oil and their plasticization effects were also investigated. Transesterification of coconut oil by glycerol followed by acetylation with acetic anhydride gave AMG-CoCo (Coco : Coconut Oil). In addition, AMG-GMO (GMO : Glycerol monooleate) and AMG-GMO-Epoxy were synthesized by acetylation and epoxidation with glycerol monooleate. It was found that the thermal stability of AMG plasticizers increased in the following order: AMG-GMO-Epoxy > AMG-GMO > AMG-CoCo and all three plasticizers were thermally more stable than those of common petroleum-based plasticizer DOP (Dioctyl phthalate). The tensile strain values of the PVC containing AMG compounds were ca. 770~810%, while tensile strength values were ca. 19~22 MPa, which were higher than those of PVC containing DOP. DMA (Dynamic Mechanical Analysis) results showed that the miscibility of AMG-GMO-Epoxy in PVC was excellent and the $T_g$ of PVC containing AMG-GMO-Epoxy at 50 phr decreased down to $24^{\circ}C$. Finally, the leaching experiment result showed that the weight loss values of PVC containing AMG-GMO and AMG-GMO-Epoxy at 50 phr were as low as 2 and 1%, respectively, indicating that they have high water migration resistance. The above findings suggested that AMG-GMO-Epoxy could be one of plant oil-based PVC plasticizers to replace DOP.

Physiochemical Characteristics and its Applicable Potential of Blast Furnace Slag Grout Mixtures of Sodium Silicate and Calcium Hydroxide (규산소다 및 수산화칼슘을 적용한 고로슬래그 그라우트의 적용성 및 물리화학적 특성)

  • Kim, Joung-Souk;Yoon, Nam-Sik;Xin, Zhen-Hua;Moon, Jun-Ho;Park, Young-Bok;Kim, Young-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.200-207
    • /
    • 2019
  • Cement is one of the most commonly used materials in the construction and civil engineering industry. However, emissions of carbon dioxide generated during the production of cement have been linked to climate change and environment pollutants. In order to replace cement, many studies have been actively performed research to utilizing Blast Furnace Slag(BFS), which is a byproduct of the steel industry. This study aims to investigate the physiochemical properties of the BFS powder based grout to determine whether it can be used as an environment-friendly grout material. As a fine powder, BSF can be used instead of cement grout due to its potential hydraulic property. BSF has also been known for its ability to strengthen materials long-term and to densify the internal structure of concrete. In order to investigate the physicochemical properties of the BFS powder based grout as a grout material, in this study assessment tests were performed through a gel-time measurement, uniaxial compressive strength, and chemical resistance tests, and heavy-metal leaching test. Characteristics and advantages of the slag were studied by comparing slag and cement in various methods.

Experimental Study on the Properties of Surface Treatment Fly Ash Using Arc Discharge (아크방전을 이용한 표면개질 플라이애시의 특성에 관한 실험적 연구)

  • Kim, Sun-A;Park, Sun-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.357-364
    • /
    • 2018
  • Fly ash is a material used as a concrete admixture. When fly ash is used for concrete manufacturing, it is expected to improve the performance such as reduction of cement usage and increase of chemical resistance. However, fly ash have some problems such as unburned carbon content and amorphous film on the surface of fly ash particles. When concrete is manufactured using fly ash containing a large amount of unburned carbon, there is a problem that the slump is lowered due to adsorption of AE agent. In addition, the amorphous film on the surface of the particles prevents the reactive substances from leaching out of the fly ash. Therefore, a method of surface treatment of fly ash using plasma has been studied to remove such unburned carbon and amorphous films. However, plasma has the problem that $O_3$ is generated when $O_2$ is used as an active gas. $O_3$ is a harmful substance and adversely affects the health of the experimenter. In this study, the surface of fly ash was treatment by arc discharge. Experimental results show that the unburned carbon is removed when the surface of fly ash is treatment by arc discharge and the amorphous film was broken and the reactivity was improved. Therefore, it is considered that arc discharge can treatment the surface of fly ash and improve the quality of fly ash.

Analysis and cause of defects in reinforced cement concrete lining on NATM tunnel based on the Precise Inspection for Safety and Diagnosis - Part I (정밀안전진단 결과를 활용한 NATM (철근)의 라이닝 결함 종류별 발생원인 및 분석 - Part I)

  • Choo, Jinho;Lee, Inmo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.1-29
    • /
    • 2019
  • Related to the previous paper on the typical crack pattern of tunnel lining with NATM, the characteristic defects in reinforced cement concrete lining of NATM tunnel have analyzed with the precise inspection with safety and diagnosis (PISD) by KISTEC. Depending on the reinforcing materials, steel rebar, steel fiber, and glass fiber have been implemented to reinforcing lining in various NATM tunnel constructions. Reinforcing lining with rebar are prevailed on NATM tunnel to countermeasure the weak geological circumstances, to pursuit the economical tunnel sections, and to resist the risk of tunnel deterioration. By the special act on the safety control of public facilities, the reinforced NATM tunnels for more than 1 km length are scrutinized closely to characterize defects; crack, reinforcement exposure, and lack of lining. Crack resistance by reinforcing is shown in comparison with the normalized crack to the length of tunnel. Typical exposed reinforcements in lining have exemplified with various sections. The lack of lining due to the mal-construction, spalling, fire, earthquake and leaching has been analyzed. The cause and mechanism with the field inspections and other studies has also been verified. Detailed cases are selected by the above concerns as well as the basic information from FMS (Facilities Management System). Likewise the previous paper, this study provides specialized defects in reinforced lining of NATM and it can be widely used in spreading the essential technics and reporting skills. Furthermore, it would be advised and amended for the detail guideline of Safety Diagnosis and PISD (tunnel).

Studies on Amelioration of Soil Physico-Chemical Properties and Rice Yield in Sandy Tidal Saline Paddy Soil (사질(砂質) 염해답(鹽害畓)에서 개량제(改良劑) 시용(施用)이 토양(土壤)의 물리화학성(物理化學性) 변화(變化)와 수도수량(水稻收量)에 미친 영향(影響))

  • Yoo, Chul-Hyun;Kim, Jong-Gu;Choi, Song-Yeol;Cho, Guk-Hyun;Yoo, Sug-Jong;So, Jae-Dong;Rhee, Gyeong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.4
    • /
    • pp.241-248
    • /
    • 1993
  • An experiment was conducted in 1990~1991 to study the effects of various soil amelioration on the soil productivity and machine workability at tidal land paddy field of Kyewhado Substation, Homam Crop Experiment Station. The soil, Munpo Series(fine sandy loam, Typic Fluvaquents) was treated with gipsum, rice straw, rice straw compost and foreign soil(at 20cm depth) after deep ploughing. The results are surmerized as follows. 1. Sand and clay were slightly increased, while silt was slightly decreased in the rice straw and compost plots. The soil texture was changed from loam to sand loam by the addition of foreign soil 2. Soil bulk density and porosity was decreased in the rice straw, compost and foreign soil addition plots. 3. Cone penetration resistance was $12.5kg/cm^2$ at 10cm of soil depth before experiment and $12.5kg/cm^2$ at 20cm of soil depth after experiment except control, and the root zone was expended down to 20cm. 4. Soil salt content before experiment was 0.46 and 0.48% for surface soil(10cm) and subsoil(20cm), respectively ; The salt content of ameliorated plot was 0.26~0.32% and 0.16~0.31%, respectively, indicating good leaching of soil salt by the soil improvements. 5. The yields of rice in different treatments were in the order of the foreign soil addition > compost > gypsum > rice straw > control.

  • PDF

Feasibility Test on Automatic Control of Soil Water Potential Using a Portable Irrigation Controller with an Electrical Resistance-based Watermark Sensor (전기저항식 워터마크센서기반 소형 관수장치의 토양 수분퍼텐셜 자동제어 효용성 평가)

  • Kim, Hak-Jin;Roh, Mi-Young;Lee, Dong-Hoon;Jeon, Sang-Ho;Hur, Seung-Oh;Choi, Jin-Yong;Chung, Sun-Ok;Rhee, Joong-Yong
    • Journal of Bio-Environment Control
    • /
    • v.20 no.2
    • /
    • pp.93-100
    • /
    • 2011
  • Maintenance of adequate soil water potential during the period of crop growth is necessary to support optimum plant growth and yields. A better understanding of soil water movement within and below the rooting zone can facilitate optimal irrigation scheduling aimed at minimizing the adverse effects of water stress on crop growth and development and the leaching of water below the root zone which can have adverse environmental effects. The objective of this study was to evaluate the feasibility of using a portable irrigation controller with an Watermark sensor for the cultivation of drip-irrigated vegetable crops in a greenhouse. The control capability of the irrigation controller for a soil water potential of -20 kPa was evaluated under summer conditions by cultivating 45-day-old tomato plants grown in three differently textured soils (sandy loam, loam, and loamy sands). Water contents through each soil profile were continuously monitored using three Sentek probes, each consisting of three capacitance sensors at 10, 20, and 30 cm depths. Even though a repeatable cycling of soil water potential occurred for the potential treatment, the lower limit of the Watermark (about 0 kPa) obtained in this study presented a limitation of using the Watermark sensor for optimal irrigation of tomato plants where -20 kPa was used as a point for triggering irrigations. This problem might be related to the slow response time and inadequate soil-sensor interface of the Watermark sensor as compared to a porous and ceramic cup-based tensiometer with a sensitive pressure transducer. In addition, the irrigation time of 50 to 60 min at each of the irrigation operation gave a rapid drop of the potential to zero, resulting in over irrigation of tomatoes. There were differences in water content among the three different soil types under the variable rate irrigation, showing a range of water contents of 16 to 24%, 17 to 28%, and 24 to 32% for loamy sand, sandy loam, and loam soils, respectively. The greatest rate increase in water content was observed in the top of 10 cm depth of sandy loam soil within almost 60 min from the start of irrigation.