• Title/Summary/Keyword: Leaching resistance

Search Result 56, Processing Time 0.028 seconds

Dimensional Stability, Color Change, and Durability of Boron-MMA Treated Red Jabon (Antochephalus macrophyllus) Wood

  • PRIADI, Trisna;ORFIAN, Gema;CAHYONO, Tekat Dwi;ISWANTO, Apri Heri
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.3
    • /
    • pp.315-325
    • /
    • 2020
  • Boron compound had many advantages as wood preservative, but it was prone to leaching. Improving boron preservation was required to extend the service life of fast growing and low durability red jabon (Antochephalus macrophyllus) hardwood. This study aimed to evaluate the dimensional stability, color change and durability of modified red jabon wood by double impregnation with boron and methyl methacrylate (MMA) and heat treatment. Impregnation I used boric acid or borax, and impregnation II used MMA, while heat treatment used temperatures of 90 ℃ or 180 ℃ for 4 hours. The dimensional stability, leachability, water absorption, color change and decay resistance of modified red jabon wood were tested. The results showed that MMA impregnation increased the dimensional stability of red jabon wood, while the leaching and water absorption in the wood significantly reduced. Heating at 180 ℃ caused less water absorption and higher dimensional stability of the wood than that of heating at 90 ℃. Impregnation with boric acid and MMA followed by heating at 90 ℃ resulted in the highest wood ASE, 89.9%. The color change (∆E*) of wood increased significantly after MMA impregnation and heating at 180 ℃. Boric acid impregnation caused more resistant wood than borax impregnation against decay fungi and termites. Impregnation with boric acid and MMA followed with heating at 180 ℃ increased significantly the wood resistance against decay fungi and termites.

Environmental Impact Review and Improvement of Durability of Silicasol-cement Grout Material (실리카졸 약액의 환경영향성 검토 및 내구증진방안)

  • Lee, Byungho;Kim, Younghun;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.12
    • /
    • pp.13-18
    • /
    • 2010
  • This study was made on the fact that the environmental impact and durability of the recently developed alkali silicasol chemical grout material. The grout material used for this study was designed to understand its environmental impact and durability through the SEM, chemical resistance test, leaching test, permeability test. In order to compare with the engineering characteristics regarding alkali silicasol grout material and sodium silicate grout material. As a result of SEM, the surface and internal tissues of alkali silicasol grout material could be identified to be denser than those of sodium silicate. As a result of leaching test the adaptability was identified as grout material as it had proved to be an ecological material owing to the total amount of the element to be leached being extremely little. As a result of permeability test it is judged that it is possible to apply the silicasol to the site in the place requiring the water cut-off as the silicasol.

Distribution and Preservative Effectiveness of Resin Element in Pine Wood Impregnated with Monoethylene Glycol Resin Solution (Monoethylene Glycol계(系) 수지액(收支液)을 주입(注入)한 소나무재(材)에 있어서 수지성분(樹脂成分)의 분포(分布)와 방부효과(防腐效果))

  • Lee, Jong-Shin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.77-82
    • /
    • 1995
  • With the aim to utilize pine wood(Pinus densiflora Sieb. et Zucc.) as an interior building materials, such as flooring material, monoethylene glycol(MEG) resin solution was impregnated into greenwood. Specimens of three different qualities, that is, normal wood, resinous wood and compression wood, were prepared. Distribution of resin element(phosphorus) in MEG resin solution-impregnated woods and preservative effectiveness against brown rot fungi(Tyromyces palustris and Serpula lacrymans) of these woods were investigated. The results were as follows: 1. The concentration of phosphorus into cell walls of resinous wood and compression wood was lower compared to that of normal wood. This shows that the quality of wood has an influence on the penetration of MEG resin solution into the wood. It was shown from a leaching test that MEG resin could be leached out easily from the cell walls. 2. The resinous wood and compression wood, even without MEG resin solution impregnation had high decay resistance. For normal wood, significant improvement of preservative effectiveness was observed after impregnation of MEG resin solution. It was shown that MEG resin was leached out from the woods after leaching test, resulting in the reduction of preservative effectiveness. From this result, suitability of MEG resin solution-impregnated woods as an interior materials was recognized.

  • PDF

A Study on the Fundamental Characteristics of a Copper Slag Mixed with Granite Soil (동슬래그 혼합토의 기본 성질에 관한 연구)

  • 김영진;배정호;홍승서
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.447-454
    • /
    • 2000
  • This paper presents fundamental characteristics of a copper slag when used geotechnical materials. For this study, it was conducted laboratory tests such as compaction, large direct shear, hydraulic conductivity, leaching, TDR, frost heave test and so on. The results of laboratory tests shown gradually increase in draining capacity and shearing resistance more slag mixing. The unfrozen water in temperature changes and frost heave amounts in condition of -17 $^{\circ}C$ appeared to decrease. Also, toxicity tests based on the domestic solid waste regulations were satisfied with nonhazardous. By this research results, a copper slag mixed with granite soil may been used as granular base and embankment materials, fill etc.

  • PDF

Leaching Characteristics on Clay Ground induced by Artesian Pressure (피압에 의한 점토 지반의 용탈 특성)

  • Yun, Daeho;Kim, Yuntae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.97-104
    • /
    • 2016
  • This paper performed consolidation tests on soft ground with and without artesian pressure conditions to find out characteristics of leaching effects using two types of one-dimensional column equipment(height : 1,100mm, outer diameter : 250mm). Artesian pressure of 5.5kPa was applied to the bottom of soft ground inside column equipment. Distribution of salinity and shear strength with soil depth were measured after the consolidation test. From the results, it was found that distribution of undrained shear strength and salt concentrations were similar at the top of clay ground irrespective of artesian pressure condition. However, at the bottom of clay ground, the values of undrained shear strength and salt concentration under artesian pressure were lower than those without artesian pressure. This result indicates that structure of soft soil with artesian pressure was weakened by salt leaching. Electronic resistance results showed that void ratio under artesian pressure condition was more reduced than that without artesian pressure condition.

Silicon purification through acid leaching and unidirectional solidification (산처리와 일방향 응고를 이용한 실리콘 정제)

  • Eum, Jung-Hyun;Chang, Hyo-Sik;Kim, Hyung-Tae;Choi, Kyoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.6
    • /
    • pp.232-236
    • /
    • 2008
  • Recently the shortage of silicon resources especially for poly-silicon of purity higher than 99.9999% leads to search for the more cheap and quick synthesizing routes for silicon feedstock. In order to solve this situation, we investigated the purification process of metallurgical grade (MG) silicon of purity around 99% by the acid leaching and following the unidirectional solidification. MG-Si lumps are pulverized with a planetary mill, and then leached with HCl/$HNO_3$/HF acid solution. As a result, the concentration of metal impurities including Al, Fe, Ca, Mn, etc. decreased dramatically. This process led to silicon content higher than 99.99%. The purified silicon powders were compacted and have been melted and uni-directionally solidified with heat exchange method (HEM) furnace. The properties of multicrystalline silicon ingots were specific resistance of $0.3{\Omega}{\cdot}cm$ and minority carrier life time (MCLT) of $3.8{\mu}{\cdot}sec$.

Engineering Properties of Self-healing Smart Grouting Method (자기치유 기능을 이용하는 SSG공법의 공학적 특성)

  • Moon, In-Jong;Kim, Byoung-Il;Heo, June;Choi, Yong-Sung;Choi, Yong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.3
    • /
    • pp.29-37
    • /
    • 2016
  • SSG (self-healing smart grouting) method, which is developed recently, has the characteristics such as an improvement of durability and waterproofing, prevention of leaching and pollution. In this study, we performed several tests such as gel-time measurement, uniaxial compression test, permeability test, fish poison test and chemical resistance test to compare the engineering properties of SSG with the other chemical grouting method (LW, SGR). As results of tests, the SSG method has low possibility of groundwater and ground pollution caused by leaching, furthermore, it has advantages like long/short term waterproofing, strength and durability. Therefore the SSG method can be applicable in the fields as an alternative of existing chemical grouting methods with problems.

A Study on the Durability and Environmentally Friendly of Inorganic Grouting Material (무기질계 지반주입재의 내구성 및 친환경적 특성에 관한 연구)

  • Chun, Byungsik;Park, Dukhyum;Kang, Hyoungnam;Do, Jongnam
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.5
    • /
    • pp.37-43
    • /
    • 2008
  • Inorganic injection material, which is one of the ground improvement materials, consists of cement accelerator and inorganic micro particle. The inorganic injection material is known to overcome the major limitations of water glass type improvement materials, which are leaching and accompanying strength loss. The inorganic injection material is superior in durability and strength, and environmentally friendly since leaching is prevented. In this study, the effectiveness and environment-friendliness of the MIS(Micro Injection-process System) using the inorganic injection material is compared to SGR, which uses the water glass. The performed tests were unconfined compression test, chemical resistance test, and fish poison test. The unconfined compression tests showed that the MIS results in 1.7 times higher 28 day strength compared to the SGR. In addition, the strength continually increased with time for the MIS, while it decreased for the SGR. The chemical resistance tests indicated that the rate of change in length using the MIS is 10~25 times smaller than when using the SGR. The fish poison test proved that MIS was more environmentally friendly. The analysis of chemical ingredients of leached showed that the amount of $Cr^{6+}$, Pb and Si leached from the MIS is less compared to the SGR. Accordingly, the MIS grout is more high-strength than existing SGR grout. It is excellent in shortening of construction period, structural stability of foundation and environmentally friendly. So, it is considered that it has not little the problem about groundwater pollution.

  • PDF

An Evaluation of the Structural Integrity of the Polymer-Modified Cement Waste Form (폴리머 시멘트 고화체에 대한 구조적 건전성 평가)

  • Ji, Young-Yong;Kwak, Kyung-Kil;Hong, Dae-Seok;Kim, Tae-Kuk;Ryu, Woo-Seog
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.2
    • /
    • pp.81-86
    • /
    • 2011
  • Polymer-modified cement is the composite material made by partially replacing and strengthening the cement hydrate binders of conventional mortar with polymeric modifiers such as polymer latexes and redispersible polymeric modifiers. It is known that the addition of polymer to cement mortar leads to improved quality, which would be expected to have a high chemical resistance. Therefore, the purpose of this study is to identify the improved chemical resistance, such as low permeability and low ion diffusivity, of the polymer-modified cement as a solidification agent for the radwaste. First, polymer-modified cement specimens by latex modification were prepared according to the polymer content from 0% to 30% to select the optimized polymer content. At those specimens, the water-to-cement (W/C) ratio was maintained to 33% and 50% respectively. After the much curing time, the structural integrity of specimens was evaluated through the compressive strength test and the porosity evaluation by the water immersion method. From the results, 10% of the polymer content at 33% of the W/C ratio was shown to have the most improved quality. Finally, the leaching test referredfrom ANS 16.1 for the specimens having the most improved quality was conducted. Dedicated specimens for the leaching test were then mixed with radioisotopes of $^{60}Co$ and $^{137}Cs$ at the specimen preparation.

A Study on Chemical Resistance of Cement Mortar Blended with Thermally Activated Diatomite containing Heavy Metals form EAF Dust (EAF Dust사의 중금속을 함침한 활성 규조토가 혼합된 시멘트 모르터의 내화학성에 관한 연구)

  • 류한길;임남웅;박종옥
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.1
    • /
    • pp.143-151
    • /
    • 1997
  • Chemical resistance of the cement mortar containing the Thermally Activated Diaomite(TAD) and H.M.(Heavy Metals) has been studied. The H.M.. extracted from EAF(Electrica1 Arc Furnace) Dust. were saturated with diatomite. The diatomite was then thermally activated at $750{\circ}C$ for 30minutes and powdeled. The powder was mixed with a portland cement on a weight basis from 0%. 2.5%. 5.0%. 10%. 20%. The optimum mixture. after those mixtures were subjected to compressive strength(7 and 28days) and leaching bchaviour of H.M.. was tested for its experiment on Wet/Dry cycles and chemical resistance(e.q. imrncrsion in 5%(Conc.) of H2S04, CaC12 and hlgSO4. It was shown that the cement, mortar containing 10% of' P.D. gave a rise to the remarkable increase in compressive strength. The compressive strength was generally decrease beyond the addition of 10% of P.D. The maximum $496kgf/cm^2$ of 28days compressive strength was acheiveti when 10% of P.D. was added to the cement mortar.