• 제목/요약/키워드: Layered beam

검색결과 164건 처리시간 0.023초

다층 점탄성재료의 진동감쇠 특성에 관한 연구 (Vibration Damping Analysis of Multi-Layered Viscoelastic Material)

  • 윤영식;황동환;이상조
    • 소음진동
    • /
    • 제4권4호
    • /
    • pp.487-496
    • /
    • 1994
  • Recently, the application of viscoelastic material in the field of vibration isolation has gradually increased due to its achievement in structural damping capacity, and many of the theoretical and experimental study has been carried out. In this study, the dynamic characteristics of the visoelastically supported cantilever beam, of which govering equation is based on the Bernoulli- Euler equation, is analyzed theoretically and experimentally. Expression for stiffness of multi-layered viscoelastic materal has been developed using variables such as frequency and number of layers, and further, based on this expression, damping characteristic of the beam is investigated with experimental verification.

  • PDF

굽힘진동 감쇠를 위한 구속층의 최적설계에 관한 연구 (A Study on the Optimum Design of Constrained layer for the Damping of Flexural Vibration)

  • 김사수;이민우
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.95-101
    • /
    • 1997
  • A general method is presented for the analysis of the damping effectiveness of viscoelastic layer applied to elastic beam. The damping is attributed to the shear deformations of the treatment. Specific results are then given for sandwich beams with dissipative cores. The calculated results by this method are validated by comparison with the experimental results. Optimum design of a viscoelastic damping layer which is constrainedly cohered on a steel beam is discussed from the viewpoint of the modal loss factor. An object function is a loss factor of 3-layered beam and design variable is the thickness of constraining layer and viscoelastic layer. Optimum thickness can be obtained when 3-layered beam has a maximum loss factor.

  • PDF

Free vibration analysis of stiffened laminated plates using layered finite element method

  • Guo, Meiwen;Harik, Issam E.;Ren, Wei-Xin
    • Structural Engineering and Mechanics
    • /
    • 제14권3호
    • /
    • pp.245-262
    • /
    • 2002
  • The free vibration analysis of stiffened laminated composite plates has been performed using the layered (zigzag) finite element method based on the first order shear deformation theory. The layers of the laminated plate is modeled using nine-node isoparametric degenerated flat shell element. The stiffeners are modeled as three-node isoparametric beam elements based on Timoshenko beam theory. Bilinear in-plane displacement constraints are used to maintain the inter-layer continuity. A special lumping technique is used in deriving the lumped mass matrices. The natural frequencies are extracted using the subspace iteration method. Numerical results are presented for unstiffened laminated plates, stiffened isotropic plates, stiffened symmetric angle-ply laminates, stiffened skew-symmetric angle-ply laminates and stiffened skew-symmetric cross-ply laminates. The effects of fiber orientations (ply angles), number of layers, stiffener depths and degrees of orthotropy are examined.

Analytical wave dispersion modeling in advanced piezoelectric double-layered nanobeam systems

  • Ebrahimi, F.;Haghi, P.;Dabbagh, A.
    • Structural Engineering and Mechanics
    • /
    • 제67권2호
    • /
    • pp.175-183
    • /
    • 2018
  • This research deals with the wave dispersion analysis of functionally graded double-layered nanobeam systems (FG-DNBSs) considering the piezoelectric effect based on nonlocal strain gradient theory. The nanobeam is modeled via Euler-Bernoulli beam theory. Material properties are considered to change gradually along the nanobeams' thickness on the basis of the rule of mixture. By implementing a Hamiltonian approach, the Euler-Lagrange equations of piezoelectric FG-DNBSs are obtained. Furthermore, applying an analytical solution, the dispersion relations of smart FG-DNBSs are derived by solving an eigenvalue problem. The effects of various parameters such as nonlocality, length scale parameter, interlayer stiffness, applied electric voltage, relative motions and gradient index on the wave dispersion characteristics of nanoscale beam have been investigated. Also, validity of reported results is proven in the framework of a diagram showing the convergence of this model's curve with that of a previous published attempt.

2층 구조 압전 트랜스듀서를 이용한 초음파 트랜스듀서 어레이의 지향 특성 가변 (Directivity Characteristics Control of Ultrasonic Transducer Array Using Two-layered Piezoelectric Transducer)

  • 김정호;송인진;하강렬;김천덕;김무준
    • 한국음향학회지
    • /
    • 제22권8호
    • /
    • pp.629-636
    • /
    • 2003
  • 의료용 초음파 진단 장치나 표적을 탐지하는 소나 등에 사용되는 초음파 트랜스듀서 어레이는 정도 높은 정보를 얻기 위해 목적에 맞는 지향특성이 요구되어진다. 본 연구에서는 사용 목적 따라 지향 특성을 가변할 수 있는 초음파 트랜스듀스 어레이를 제안하였다. 제안한 초음파 트랜스듀서 어레이는 전기적 용량으로 제 2 차 모드의 효율을 제어할 수 있는 2층 구조 트랜스듀서를 이용하여 트랜스듀서 어레이의 빔 폭을 제어하였다. 이것을 시험 제작하여 이론 및 실험적으로 해석한 결과 주엽의 -3 dB 빔 폭을 7.6° ∼ 16.2°의 범위에서 제어 가능함을 확인하였다.

수동형 음강성 저주파 제진기의 감쇠 성능 향상과 빔 유연체의 최적 설계에 관한 연구 (A Study on the improvement of damping and optimal design of beam flexure for the passive vibration isolator)

  • 이길용;장희도;박영호;박인황;한동철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.189-195
    • /
    • 2008
  • The vibration isolator system(VIS) which has very low natural frequency could be designed by applying an axial compressive force to the beam-column flexure(BCF). In this paper a new shape of the BCF is suggested. It has stepwise axially varying properties by viscoelastic damping layer. So it has internal structural damping by damping layer during deformation. First the analytic solution is obtained for the BCF. And its critical load, buckling mode, stiffness and stress distributions are investigated. Also the dynamic properties of the VIS consist of the damping layered BCF are studied. Finally the optimal design procedure of damping layered BCF for the VIS is suggested. The improved performance of suggested VIS is verified by some experiments.

  • PDF

Flexural Modeling of Strengthened Reinforced Concrete Beam with Nonlinear Layered Finite Element Method

  • Kim, Min-Kyung;Lee, Cha-Don
    • KCI Concrete Journal
    • /
    • 제11권3호
    • /
    • pp.115-126
    • /
    • 1999
  • An analytical method based on the nonlinear layered finite element method is developed to simulate an overall load-deflection behavior of strengthened beams. The developed model distinguishes itself by its capability to trace residual flexural behavior of a beam after the fracture of brittle strengthening materials at peak load. The model. which uses a rather advanced numerical technique for iterative convergence to equilibrium, can be regarded as superior to the two models based on load control and displacement control The model predictions were compared with the experimental results and it was observed that there was good agreement between them.

  • PDF

Vibration and damping behaviors of symmetric layered functional graded sandwich beams

  • Demir, Ersin
    • Structural Engineering and Mechanics
    • /
    • 제62권6호
    • /
    • pp.771-780
    • /
    • 2017
  • In this study, free vibration and damping behaviors of multilayered symmetric sandwich beams and single layered beams made of Functionally Graded Materials were investigated, experimentally and numerically. The beams were composed of Aluminum and Silicon Carbide powders and they were produced by powder metallurgy. Three beam models were used in the experiments. The first model was isotropic, homogeneous beams produced by using different mixing ratios. In the second model, the pure metal layers were taken in the middle of the beam and the weight fraction of the ceramic powder of each layer was increased towards to the surfaces of the beam in the thickness direction. In the third model, the pure metal layers were taken in the surfaces of the beam and the weight fraction of the ceramic powder of each layer was increased towards to middle of the beam. Then the vibration tests were performed. Consequently, the effects of stacking sequence and mixing ratio on the natural frequencies and damping responses of functionally graded beams were discussed from the results obtained. Furthermore, the results obtained from the tests were supported with a finite-element-based commercial program, and it was found to be in harmony.

음선 모델에 적용된 이층 해저 바닥 모델의 유효성 (Validity of Two-layered Ocean Bottom Model for Ray Model)

  • 이근화;성우제
    • 한국음향학회지
    • /
    • 제34권6호
    • /
    • pp.470-478
    • /
    • 2015
  • 음선 모델링에서 다층 해저 바닥을 고려하는 경험적 방법 중 하나는 단일층 가정으로써, 다층 구조에 대한 평면파 반사계수를 사용하는 것이다. 본 연구자는 이층 해저 바닥에 대해 단일 층 가정의 유효성을 조사하고, 음속비, 송수신 거리 당 층 두께, 1차 반사파의 스침각의 함수로 표현되는 간단한 부등식 조건을 얻었다. 부등식 조건으로부터, 단일 층 가정이 실제 해양 환경의 중주파수 음선 모델링에 적용될 수 있음을 보였다. 마지막으로 한국 동해와 유사한 해양환경에 대해 수치실험을 수행하였다. 다층 해저 바닥에 대한 평면파 반사계수를 적용한 기하학적 빔 모델을 이용하여 비상관 전달손실을 계산하고, 서울대학교에서 개발한 포물선 방정식 패키지인 SNUPE 2.0의 결과와 비교하였다.

유한요소-경계요소 조합에 의한 지반-말뚝 상호작용계의 주파수 응답해석

  • 김민규;조석호;임윤목;김문겸
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.443-450
    • /
    • 2000
  • In this study a numerical method for soil-pile interaction analysis buried in multi-layered half planes is presented in frequency domain using FE-BE coupling. The total soil-pile interaction system is divided into two parts so called far field and near field beam elements are used for modeling a pile and coupled with plain strain elements for soil modeling. Boundary element formulation using the multi-layered dynamic fundamental solution is adopted to the far field and coupled with near field modeled by finite elements. In order to verify the proposed soil-pile interaction analysis method the dynamic responses of a pile on multi-layered dynamic fundamental solution is adopted to the far field and coupled with near field modeled by finite elements. In order to verify the proposed soil-pile interaction analysis method the dynamic responses of a pile on multi-layered half-planes are performed and compared with experiment results. Through this developed method the dynamic response analysis of a pile buried in multi-layered half planes can be calculated effectively in frequency domain.

  • PDF