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ABSTRACT

An analytical method based on the nonlinear layered finite element method is developed
to simulate an overall load-deflection behavior of strengthened beams. The developed
model distinguishes itself by its capability to trace residual flexural behavior of a beam
after the fracture of brittle strengthening materials at peak load.

The model, which uses a rather advanced numerical technique for iterative convergence
to equilibrium, can be regarded as superior to the two models based on load control and
displacement control.

The model predictions were compared with the experimental results and it was observed
that there was good agreement between them.
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1. INTRODUCTION

The strengthening of reinforced concrete
members by externally bonded steel plates
or FRP sheets has been used exclusively in
recent years. Both retrofitting methods of
bonding steel plates and bonding FRPs
externally offer several advantages: (1)
inexpensive and rapid applicability in the
field with little or no disturbance: (2)
keeping the original configuration of the
structure: and (3) maintaining the overhead
clearance. Especially external bonding of
FRP sheets has
alternative to bonding steel plates due to its

become a variable
high strength-to-weight ratio, lightweight,

resistance to chemicals. good fatigue
strength, non-magnetic, and non-conductive
properties(8).

This paper presents an analytical model
for predicting load-deflection relations,
stresses, and strains of such a strengthened
reinforced concrete beams. Except for

analyses focusing on the micro-level
localized effects, there are a few theoretical
models for predicting flexural behavior of
strengthened reinforced concrete beams. The
previously proposed models can be divided
into two groups: (1) prediction of flexural
strength only{8), and (2) prediction of
overall flexural load-deflections(9). For the
prediction of a flexural strength, couple
methods with the

compatibility are widely employed. For the

assumption of

prediction of overall flexural behavior of
strengthened reinforced concrete beam,
couple method with assumptions on overall
distribution of curvatures along the beam
span and nonlinear finite element methods

are usually used.
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Finite element methods are basically
developed with layered model which is
appropriate modeling technique for beams
mainly governed by flexures.

Couple method requires a rather simple
solution  technique with one variable
involved: bisection method, secant method,
Regular-Falsi method, and Newton method,
for example. On the other hand, most
popular solution technique for nonlinear
finite element method would be Newton-
Raphson method for N-variables. Since its
derivation assumes load control, the
method, thus, has deficiencies in finding
load-deflection relationship beyond peak
load. In order to trace the softening
behavior, displacement-controlled method
can be used. According to this method
displacement at particular point(s) in a
beam is(are) pre-assigned and corresponding
load(s) is(are) found as reaction(s).
Although this method is

reproducing post peak flexural behavior of a

capable of

beam, only statically determinate structures
or indeterminate structures subject to a
limited number of - point loads can be
modeled.

The objective of this research is to
develop general flexural model which could
overcome the limit of the existing models.

The model must be able to trace post
peak behavior of strengthened reinforced
concrete beam and is indifferent to
determinacy of a structure. For this purpose
nonlinear layered finite element method is
used with an advanced numerical solution
technique, called arc-length method.

It is shown that the developed model is
capable of tracing both pre-peak and
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post-peak behavior and compares well with

experimental results.

2. LITERATURE REVIEW

2.1 Failure Modes

From the experiments, five failure modes
can be observed for the strengthened
reinforced concrete beam; (1) tension
failure, (2) separation, (3) rip off, (4)
tension failure and separation, and (5)
separation and rip off(1). It may not be
desirable for a beam to experience local
failure before tension failure of FRP sheet

occurs at the section of maximum moment.

2.2 Flexural Modeling Techniques

A few analytical models predicting the
flexural behavior of strengthened reinforced
concrete beam are available from the
literature. A typical model would be the
one presented by Hamid Saadatmanesh
et.al(6].

compatibility of deformations for predicting

They presented a model based on

overall load and curvature relationships of
strengthened reinforced concrete beam for
rectangular and T-sections. They assumed
that linear strain distribution through the
full depth of a beam, no tensile strength in
concrete, no shear deformation, and no slip
between composite plate and concrete beam.
Based on their assumptions they found
iteratively the location of the neutral axis

for the equilibrium of internal forces(Fig.1):

of be+ glfs,-As,-Jrfp,Ap,: 0 (1)

where:
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a=mean stress factor:

b=beam width:

c=depth of neutral axis measured
compressive

from top concrete

fiber:

fi=stress of steel:
f.=stress of concrete:
Ag=steel of area:
dy=nplate of stress: and

A, =plate of area.

Once this neutral axis is found, the
internal resisting moment is obtained by
summing moments from all the internal

forces with respect to the neutral axis:

M=afibe(E-yo+ L rad-d)
+fp1Apl(% - dpl) =0

where!
P=force in plate:
h=Dbeam section height:
y=centroid factor indicatiy position
of compressive force in concrete:
d;=depth measured from top

concrete fiber(level of steel
rebar); and
dy=depth measured from top

concrete fiber(plate).

b L e .
' § S
it ot b
+ T - e -
h q,?
| :
| R 11»85 fg S
f —+W b p
SECTICN STRAN STRESS FORCE

Fig.1 Strain, Stress, and Force Diagrams across the Depth
of Rectangular Section{6]
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Although this model compared well with
experimental results it is restricted to
reproducing moment (or applied load) and
curvature relationships only.

Similar  assumptions are made by
Li-Hyung Lee et.al.(7] in predicting overall
flexural load-deflection relationships. In
their model, however, load versus deflection
relationships are found by assuming linearly
varying curvature distributions along the
beam span for simply supported beam(see
Fig2). They found curvatures at the
locations where maximum moment occurs
and at FRP sheet terminates. Curvature at
support is assumed to be zero and all other
curvatures between them are assumed to
vary linearly. Their analytical model and

test results agreed well.

| P

A B C
Repaired Beam

Moment Diagram

X

Curvature Diagram

Fig. 2 Moment and Assumed Curvature Diagram{7]
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Chadon Lee et.al.(8) proposed a flexural
model which can be regarded as an
intermediate model between couple method
and nonlinear layered finite element model.
They basically adopted assumptions made in
couple method but improved the model by
adding one additional equilibrium condition
for sectional moments called ‘moment
equilibrium’ . This condition is imposed at
each pre-selected section and neutral axis
and curvature at each section are

obtained(Fig.3):

Fi= 8 F=0 (=0.1.2.....0

= Fu,

Both models are, however, limited in their

applications to statically determinate
structures only. As far as loading types
applicable to a model are concerned, finite

element method is most suitable one.
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Fig.3 Extended Couple Method(8]
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The appropriate model for reinforced
concrete beam strengthened with brittle
FRP sheets need to have the following
characteristics: (1 applicability to

indeterminaté  structure, (2)  possible
inclusion of various types of externally
applied loads, and (3) capability of
simulating post-peak behavior after peak
load due to tension fracture of FRP sheets.
The model which can accomodate these
characteristics are developed in this study.
Nonlinear layered finite element method and

arc-length method are used for this purpose.

3. DEVELOPMENT OF MODEL
3.1 Assumptions and limitation

The following assumptions are made in
developing the model: 1) plane section
remains plane before and after bending
(Euler-Bernoulli’s hypothesis): 2) among
other factors, failure of strengthened beam
is governed by tensile fracture of FRP
sheets only.

The model assumes that there is no local
failure such as separation, rip off and/or
their combinations, and no shear failure

occurs.

3.2 Theoretical Developments

3.2.1 Layered Finite Element Method

Approximate horizontal displacement u,(x)
and vertical displacement v,(x) in Fig.4

along the reference axis of the element can

be expressed using shape functions as
follows(3):
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Fig. 4 Beam Column Element for Finite Formulation{3]

[ (%)

o) ]= NU (4.a)

where N is the shape function given by:

N:[Nlu(x) 0 0 M 0 0
0 No(x) Npo() 0 Ny Np(w)

(4.b)

where:
N ()=1—x/1;

Nolx)=x/1;

Ny(®)=1-3(x/1)2+2(x/1)*;

Nofx)=x—2(x2/ 1) +2(S5/ P )

Ny (2)=3(x/1)*—2(x/1)*; and

Ny =~ D+ P .

The horizontal displacement u(x,» can

be expressed in terms of u,(x) aﬁd v (%)
as:

w(x, V)= u,(x) —yi’; V(%) (5)

Then the longitudinal strain e(x,y) is
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given by:
du(x)
dulx. v) ax
elx, y)= =11 —
(x,9) e [1 =] o)
ar* (6)
=[1 —¥1BU
where:
B —dN;;(") 0 0 d—Ni;)f") 0 0
FNLD_ENlx) 0 FN(D)  FN )
&’ @’ &’ dx

Let U, be the displacement vector

obtained in the previous steps, and & Uthe

current incremental displacement vector to

be sought. Then currently sought
displacements as well as strains are:

U= Uy+ s U

&o(x,y)=[1 —y] BU, (")

seg(x,3)=[1 —y]BA U

Once strains e(x,y) are obtained, the
internal axial force T(x) and the internal

moment M(x) are computed as follows:

T(x) = To(x) + & T(x)

M(x) = My(x) + & M(x) ®
where:
Ty = 2 0. (ea(x ) Ass
A T(x) = Z w‘i—(eao,im selx, M)A
My(x) = Zl—o,«(eo(x, MWA;y;; and
AM(x) = Z}I_ﬂi(%ﬂ ne(x, N A;y;.

The above equations can be rewritten in

matrix form as:

[ar8)-pBosU (9)
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where:
2 do; (eo(x »)

Do 3 A, Z dd,(so(x ¥)) ALy,
_ Zl do; (esix ) Ay, 2 do.(eo(x D)) TLAGIES)

The application of virtual work principle

and integration over the length 1, lead to:

_dTx)
ax | g
d*M(x)
i’ (10

i e

fol{ Suy(x) v, (x)}

This equation can be summarized as;
KaU=(—Fy+P)+aP (11D
where:

K= fOIBTDde;

m=J, 5| e

Mo(x)

_ Lo f/.o(x) .
Po-fo N [fw(x) ]dx,and
_ ot ar| A0
ap= [ N { A ) }”""

Assuming equilibrium state is reached, we
get:
KaU= AP (12)

3.2.2 Arc-Length Method
In contrast to usual analysis methods, the
load and displacement both are treated as

variables in arc-length method. Out of

balance forces, g(U) ,can be expressed as:

gy = Ay — AP (13)
where:
f= internal forces;
U=function of the

displacements: and

current
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P= fixed total load vector.

The A4 is taken as a load-controlling
parameter in the above equation. Since the
load level is treated as a variable, an extra
governing equation is required and this is
given by a constraint in the form of arc(see
Fig. 5):

A Ufer 8 Upsy + 0025, PTP

(14)
= AU AU+ bods PTP= . aF
where,
U;= incremental displacement after
the i-1th iteration:
AA;= incremental load change after
this iteration:
al=  incremental length to be
discussed later: and
b= scalar parameter, current

stiffness parameter.

/o Al
I
S SN B i
; So O1:682
AOP A
; ; f
| i
o i
.To.zé U 1~—I 1 displacement)
T AUz |
TAUT T

Fig.5 Basic arc-length procedure and notation for one
degree-of-freedom system{2]
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Taking 27/=0, we have:

8 AU+ bsA, PTP=0 (15)
where:

8;= the iterative displacement: and

(A U;-y, 54;2))= secant change over

the increment.

With perfect convergence, we will have
fg( Uo):ﬂop
where, Aj;=load level at end of- last

increment

For i=0 onwards, the iterative procedure

then involves:

A1 = Aot A= A+ 4,
(16)
Uiny= U+ 2 Uiy = Ui+, 6,

where A U,'+1 = A U,' + 7; 6,‘ is the
incremental displacement and 5, is the

step-length which, for the present, may be

read as unity.

The modified Newton-Raphson technique
is applied where the tangent stiffness
matrix(K) is formed at the beginning of
each increment and it is fixed for all the
iterations within the increment. Using the
indirect solution procedure of Crisfield and
Ramm(2],

d;= _K_l(fi(Ui)_/iHlP)
_ (17)
= 0; + Aix1 071

where,

E: "K_lfi(Ui) : and
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or= K 'P.

However, the iterative vector &; is only
fully defined once Ay 1s known.

Substitution of equation (16) and (17) into

the constraint equation (14) gives

a1 + azd i + a3=0 (18)
where:
01:771'3; dr;

a2=28¥(AU,-+E);and

ay= 1,07 8, +28] AU,
Assuming exact satisfaction of the
constraint of equation at the previous
iteration, the terms in square brackets in
equation may be omitted. The appropriate
root of Eq.19 is chosen by ensuring an
acute angle @ between & U; and A& Uy,
ie.:

/i
INZ

cosf=1+ (d4+/1,‘+1d1) (19)

where,

d,= 8%a U;; and
d4 = ?,TA U{ .
If both values of cos@ are positive, one

may choose the appropriate A;;; as the root

closest to the linear solution of
Aisrin=— a3l ay (20)
scheme  for

The overall numerical

arc-length method is given in Fig.6.

122

| Py A, GIVEN J

T
%

Poow = Py x4 4

new

2=, 4,

l Internal Force (flu, ) I

v

| = (K] (u, ) l

| a,,ay.a; SEEK and 4, J

[ Pui % Ay = Pres

b—k

Fig.6 Flow of Solution Techniquel9]
4. CONSTITUTIVE MODELSI(9])

Empirical constitutive models for concrete,
steel rebar, and FRP sheet are used. The
models are presented in Fig.7.

The meaning of main parameters
appearing in Eq.(21) through Eq.(23) are

illustrated in Fig.7.

4.1 Concrete under Compression

For 0<ele,

fc:_ fCZ(E_Ec)2+f'c
(e0)
2n
For e <ele,
fo= (Lo e eo 44,
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4.2 Steel Rebar under Tension and
Compression

For 0=e<e,

f;:: 12}’6

For e,<eg,

j;:: f}

(22)

For ¢,<ee,

(fy_fu)

(Eh_e )2 (E_Eu)2+fu

1=

4.3 FRP sheet under Tension

Based on experimental observations the
linear elastic behavior up to failure is
assumed for FRP under tension.

For 0<eep,
fr=Ep- €
(23)

For e,<e

f/=0

f'c

f'c

fr

focll S
m

Ec

(a) Concrete Compressive Stress—Strain Model

fs

fu

Ey

gy gh  gu gfrg

o
=

o

d

e

5

3

fy
fu

(b} Rebar Stress-Strain Model
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fe
fpu >

(c) FRP Sheet Tensile Stress—-Strain Mode!

Fig. 7 Constitutive Models

5. COMPARISONS WITH TEST
RESULTS

In order to verify the wvalidity of the
developed model the model predictions are
compared with experimental results reported
by different researchers (1,4,5,10].

—— Comp. sleel

P/2

E Tension steel
FRP S heet

Fig. 8 Modeling by F.EM

Table 1 summarizes main parameters
used for each test and Fig.8 illustrates

developed finite element modeling.

Fig. 9 shows that the developed model is
reasonably reproducing prepeak flexural
behavior, ultimate load, and post peak
flexural behavior of strengthened reinforced
concrete beam. It is wroth mentioning that

the developed model is superior to other
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models in its capability of incorporating indeterminate structures, and tracing the

different type of loads, analysis of post-peak behavior after peak load.

Table 1 Summary of Main Parameters for each Beam[1,4,5,10]

. Comp. .
Bean Ref ]_iiartnh b Tensile Steel Steel fy e Strengthening Sheet
. (cngl) (em)| Area | ds | Area | ds’ |(kg/cr)| (kg/cif) Material fpu Eps | Thickness
(crf) |(cm)| (em) |(cm) atenas| (g/om) | (ke/or) (cm)
2-D10 2-D10 a
SMFCIN| 1 200 15 (1.443) 22 (1.43) 3 4374 250 CFRP | 35000 |2600000| 0.0165
2-D13 2-D10
SLFCIN | 1 200 15 (2.54) 22 (1.43) 3 4252 250 CFRP | 35000 | 260000 | 0.0165
) 2-D13 2-D10
F3-130 | 4 200 15 (2.54) 22 (1.43) 3 4520 200 CFRP | 35500 | 235000 0.033
2-D13 2-D10
COE 5 100 15 (2.54) 12 (1.43) 3 4060 278 GFRP 4500 | 227000 1EA
3-D19 2-D10
BCFCA | 10| 300 25 (8.60) 35 (1.43) 5 4526 250 CFRP | 49935 [2670000| 0.011
3-D19 2-D10
BCFCB | 10| 300 25 (8.60) 35 (1.43) 5 4526 250 CFRP | 45650 {2490000| 0.011
3080 12000
load(kgf) load(kgf) analysis
a0 o) 9000 7 — — test
h 7
-2 = /
400 o - 5000
S
am | g = = = -andlysis 3000 =
deflection(cm
test deflection(cm)
0 0
0 1 2 3 4 0 1 2 3 4
(@ Ref1] SMFCIN (©) Ref[4] F3-130-19
8000 it 10000
Ioad(kgﬁ), load(kgf)
m ',' &ID ) .. « > N
6000 s .
'/' ~ .
001
) .
2000 = = = =analysis 2000 [ = = = analysis
deflection(cm test deflection(cm) test
0 0
0 1 2 3 4 0 05 1 15 2
(b) Ref[1] SLFCIN (d) Ret.[5} COE
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40000
load(kgf) s
- 4
20000
10000 = = = =anaysis
test
deflection(cm
0
0 1 2 3 4 5
(e) Ref[10] BCFCA
40000
load(kgf)
30000
L/
20000 .
10000 test
deflection(cm) = = = =analysis
0
0 9 2 3 4 5

(f) Ref[10] BCFCB

Fig.9 Comparisons between Test Results and
Model Predictions

6. CONCLUSIONS

In this research, various types of
theoretical models and solution techniques
suggested for predicting flexural behavior of
strengthened reinforced concrete beam are
reviewed. Their merits and demerits are
discussed and based on which a refined
model is developed. The developed model
can be regarded as more general which are
mostly one than previously suggested models
based on couple method, extended couple
method, load controlled finite element
method and displacement controlled finite
element method. The validity of the

developed model is demonstrated by

KCI Concrete Journal (VOL.11 No.3 1999.7)

comparing its predictions with experimental
results reported by different researchers.
The developed model is found to predict
experimental  results  reasonably  well.
Compared with those models suggested by
other researchers, the developed model has

the following advantages:

1) compared with couple method, the
model calculates curvatures along the beam
span without assumptions. In addition, the
model is applicable to indeterminate
structures:

2) compared with load-controlled finite
element method, the model can predict
residual flexural behavior of strengthened
reinforced concrete beam after tensile
fracture of brittle FRP sheets: and

3) compared with  displacement -
controlled finite element method, the model
can be applicable to more general loading

types and structures.
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