• Title/Summary/Keyword: Layer-by-layer learning

Search Result 642, Processing Time 0.029 seconds

Kriging Regressive Deep Belief WSN-Assisted IoT for Stable Routing and Energy Conserved Data Transmission

  • Muthulakshmi, L.;Banumathi, A.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.91-102
    • /
    • 2022
  • With the evolution of wireless sensor network (WSN) technology, the routing policy has foremost importance in the Internet of Things (IoT). A systematic routing policy is one of the primary mechanics to make certain the precise and robust transmission of wireless sensor networks in an energy-efficient manner. In an IoT environment, WSN is utilized for controlling services concerning data like, data gathering, sensing and transmission. With the advantages of IoT potentialities, the traditional routing in a WSN are augmented with decision-making in an energy efficient manner to concur finer optimization. In this paper, we study how to combine IoT-based deep learning classifier with routing called, Kriging Regressive Deep Belief Neural Learning (KR-DBNL) to propose an efficient data packet routing to cope with scalability issues and therefore ensure robust data packet transmission. The KR-DBNL method includes four layers, namely input layer, two hidden layers and one output layer for performing data transmission between source and destination sensor node. Initially, the KR-DBNL method acquires the patient data from different location. Followed by which, the input layer transmits sensor nodes to first hidden layer where analysis of energy consumption, bandwidth consumption and light intensity are made using kriging regression function to perform classification. According to classified results, sensor nodes are classified into higher performance and lower performance sensor nodes. The higher performance sensor nodes are then transmitted to second hidden layer. Here high performance sensor nodes neighbouring sensor with higher signal strength and frequency are selected and sent to the output layer where the actual data packet transmission is performed. Experimental evaluation is carried out on factors such as energy consumption, packet delivery ratio, packet loss rate and end-to-end delay with respect to number of patient data packets and sensor nodes.

The Study of the Financial Index Prediction Using the Equalized Multi-layer Arithmetic Neural Network (균등다층연산 신경망을 이용한 금융지표지수 예측에 관한 연구)

  • 김성곤;김환용
    • Journal of the Korea Society of Computer and Information
    • /
    • v.8 no.3
    • /
    • pp.113-123
    • /
    • 2003
  • Many researches on the application of neural networks for making financial index prediction have proven their advantages over statistical and other methods. In this paper, a neural network model is proposed for the Buying, Holding or Selling timing prediction in stocks by the price index of stocks by inputting the closing price and volume of dealing in stocks and the technical indexes(MACD, Psychological Line). This model has an equalized multi-layer arithmetic function as well as the time series prediction function of backpropagation neural network algorithm. In the case that the numbers of learning data are unbalanced among the three categories (Buying, Holding or Selling), the neural network with conventional method has the problem that it tries to improve only the prediction accuracy of the most dominant category. Therefore, this paper, after describing the structure, working and learning algorithm of the neural network, shows the equalized multi-layer arithmetic method controlling the numbers of learning data by using information about the importance of each category for improving prediction accuracy of other category. Experimental results show that the financial index prediction using the equalized multi-layer arithmetic neural network has much higher correctness rate than the other conventional models.

  • PDF

Study on Teaching and Learning Methods of Embedded Application Software Using Elevator Simulator (엘리베이터 시뮬레이터를 활용한 임베디드 어플리케이션 소프트웨어 교수학습방법 연구)

  • Ko, Seokhoon
    • The Journal of Korean Association of Computer Education
    • /
    • v.21 no.6
    • /
    • pp.27-37
    • /
    • 2018
  • In this paper, we propose a design and development method of an elevator simulator that can be used as an embedded application layer software learning tool and a teaching and learning method using it. The simulator provides students with an environment to implement the operating principle and control method of the elevator system in the application layer excluding the issues of hardware and embedded OS layer. This allows students to have a reactive and real-time embedded application development experience. In addition, we present a four-week embedded application software training course with hands-on exercises that add step-by-step functionality using a simulator. As a result of training for actual students, we obtained 83.3 points of learning achievement score and proved that the curriculum has a significant effect on embedded application learning.

Classification of ECG Arrhythmia Signals Using Back-Propagation Network (역전달 신경회로망을 이용한 심전도 파형의 부정맥 분류)

  • 권오철;최진영
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.343-350
    • /
    • 1989
  • A new algorithm classifying ECG Arrhythmia signals using Back-propagation network is proposed. The base-line of ECG signal is detected by high pass filter and probability density function then input data are normalized for learning and classifying. In addition, ECG data are scanned to classify Arrhythmia signal which is hard to find R-wave. A two-layer perceptron with one hidden layer along with error back-propagation learning rule is utilized as an artificial neural network. The proposed algorithm shows outstanding performance under circumstances of amplitude variation, baseline wander and noise contamination.

  • PDF

NETLA Based Optimal Synthesis Method of Binary Neural Network for Pattern Recognition

  • Lee, Joon-Tark
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.216-221
    • /
    • 2004
  • This paper describes an optimal synthesis method of binary neural network for pattern recognition. Our objective is to minimize the number of connections and the number of neurons in hidden layer by using a Newly Expanded and Truncated Learning Algorithm (NETLA) for the multilayered neural networks. The synthesis method in NETLA uses the Expanded Sum of Product (ESP) of the boolean expressions and is based on the multilayer perceptron. It has an ability to optimize a given binary neural network in the binary space without any iterative learning as the conventional Error Back Propagation (EBP) algorithm. Furthermore, NETLA can reduce the number of the required neurons in hidden layer and the number of connections. Therefore, this learning algorithm can speed up training for the pattern recognition problems. The superiority of NETLA to other learning algorithms is demonstrated by an practical application to the approximation problem of a circular region.

Optimal Synthesis of Binary Neural Network using NETLA (NETLA를 이용한 이진 신경회로망의 최적합성)

  • 정종원;성상규;지석준;최우진;이준탁
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.273-277
    • /
    • 2002
  • This paper describes an optimal synthesis method of binary neural network(BNN) for an approximation problem of a circular region and synthetic image having four class using a newly proposed learning algorithm. Our object is to minimize the number of connections and neurons in hidden layer by using a Newly Expanded and Truncated Learning Algorithm(NETLA) based on the multilayer BNN. The synthesis method in the NETLA is based on the extension principle of Expanded and Truncated Learning (ETL) learning algorithm using the multilayer perceptron and is based on Expanded Sum of Product (ESP) as one of the boolean expression techniques. The number of the required neurons in hidden layer can be reduced and fasted for learning pattern recognition.. The superiority of this NETLA to other algorithms was proved by simulation.

  • PDF

Optimum chemicals dosing control for water treatment (상수처리 수질제어를 위한 약품주입 자동연산)

  • 하대원;고택범;황희수;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.772-777
    • /
    • 1993
  • This paper presents a neuro-fuzzy modelling method that determines chemicals dosing model based on historical operation data for effective water quality control in water treatment system and calculates automatically the amount of optimum chemicals dosing against the changes of raw water qualities and flow rate. The structure identification in the modelling by means of neuro-fuzzy reasing is performed by Genetic Algorithm(GA) and Complex Method in which the numbers of hidden layer and its hidden nodes, learning rate and connection pattern between input layer and output layer are identified. The learning network is implemented utilizing Back Propagation(BP) algorithm. The effectiveness of the proposed modelling scheme and the feasibility of the acquired neuro-fuzzy network is evaluated through computer simulation for chemicals dosing control in water treatment system.

  • PDF

Searching a global optimum by stochastic perturbation in error back-propagation algorithm (오류 역전파 학습에서 확률적 가중치 교란에 의한 전역적 최적해의 탐색)

  • 김삼근;민창우;김명원
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.3
    • /
    • pp.79-89
    • /
    • 1998
  • The Error Back-Propagation(EBP) algorithm is widely applied to train a multi-layer perceptron, which is a neural network model frequently used to solve complex problems such as pattern recognition, adaptive control, and global optimization. However, the EBP is basically a gradient descent method, which may get stuck in a local minimum, leading to failure in finding the globally optimal solution. Moreover, a multi-layer perceptron suffers from locking a systematic determination of the network structure appropriate for a given problem. It is usually the case to determine the number of hidden nodes by trial and error. In this paper, we propose a new algorithm to efficiently train a multi-layer perceptron. OUr algorithm uses stochastic perturbation in the weight space to effectively escape from local minima in multi-layer perceptron learning. Stochastic perturbation probabilistically re-initializes weights associated with hidden nodes to escape a local minimum if the probabilistically re-initializes weights associated with hidden nodes to escape a local minimum if the EGP learning gets stuck to it. Addition of new hidden nodes also can be viewed asa special case of stochastic perturbation. Using stochastic perturbation we can solve the local minima problem and the network structure design in a unified way. The results of our experiments with several benchmark test problems including theparity problem, the two-spirals problem, andthe credit-screening data show that our algorithm is very efficient.

  • PDF

A Basic Study on the Effect of Number of Hidden Layers on Performance of Estimation Model of Compressive Strength of Concrete Using Deep Learning Algorithms (Hidden Layer의 개수가 Deep Learning Algorithm을 이용한 콘크리트 압축강도 추정 모델의 성능에 미치는 영향에 관한 기초적 연구)

  • Lee, Seung-Jun;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.130-131
    • /
    • 2018
  • The compressive strength of concrete is determined by various influencing factors. However, the conventional method for estimating the compressive strength of concrete has been suggested by considering only 1 to 3 specific influential factors as variables. In this study, nine influential factors (W/B ratio, Water, Cement, Aggregate(Coarse, Fine), Fly ash, Blast furnace slag, Curing temperature, and humidity) of papers opened for 10 years were collected at 4 conferences in order to know the various correlations among data and the tendency of data. The selected mixture and compressive strength data were learned using the Deep Learning Algorithm to derive an estimated function model. The purpose of this study is to investigate the effect of the number of hidden layers on the prediction performance in the process of estimating the compressive strength for an arbitrary combination.

  • PDF

A Study on EMG Signals Recognition using Time Delayed Counterpropagation Neural Network (시간 지연을 갖는 쌍전파 신경회로망을 이용한 근전도 신호인식에 관한 연구)

  • Kwon, Jangwoo;Jung, Inkil;Hong, Seunghong
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.3
    • /
    • pp.395-401
    • /
    • 1996
  • In this paper a new neural network model, time delayed counterpropagation neural networks (TDCPN) which have high recognition rate and short total learning time, is proposed for electromyogram(EMG) recognition. Signals the proposed model increases the recognition rates after learned the regional temporal correlation of patterns using time delay properties in input layer, and decreases the learning time by using winner-takes-all learning rule. The ouotar learning rule is put at the output layer so that the input pattern is able to map a desired output. We test the performance of this model with EMG signals collected from a normal subject. Experimental results show that the recognition rates of the suggested model is better and the learning time is shorter than those of TDNN and CPN.

  • PDF