• Title/Summary/Keyword: Layer Growth

Search Result 2,515, Processing Time 0.034 seconds

Direct Growth of Graphene on Insulating Substrate by Laminated (Au/Ni) Catalyst Layer

  • Ko, Yong Hun;Kim, Yooseok;Jung, Daesung;Park, Seung Ho;Kim, Ji Sun;Shim, Jini;Yun, Hyeju;Song, Wooseok;Park, Chong-Yun
    • Applied Science and Convergence Technology
    • /
    • v.24 no.4
    • /
    • pp.117-124
    • /
    • 2015
  • A direct growth method of graphene on insulating substrate without catalyst etching and transfer process was developed using Au/Ni/a-C catalyst system. During the growth process, behavior of the Au/Ni catalyst was investigated using EDX, XPS, SEM, and Raman spectroscopy. The Au/Ni catalyst layer was evaporated during growth process of graphene. The graphene film was composed mono-layer flakes. The transmittance of the graphene film was ~80.6%.

Epitaxial Growth of BSCCO Thin film Fabricated by Layer-by-layer Sputtering

  • Yang, Sung-Ho;Park, Yong-Pil;Lee, Hee-Kab
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.212-217
    • /
    • 2000
  • Bi$_2$Sr$_2$CuO$_{x}$(Bi-2201) thin films have been fabricated by atomic layer-by-layer deposition using ion beam sputtering(IBS) process. During the deposition, 14 wt%-ozone/oxygen mixture gas of typical pressure of 5.0$\times$10$^{-5}$ Torr is supplied with ultraviolet light irradiation for oxidation. XRD and RHEED investigations reveal that a buffer layer with compositions different from Bi-2201 is formed at the early deposition stage of less than 10 units cell and then Bi-2201 oriented along the c-axis is grown.n.

  • PDF

TFT 소자에 응용하기 위한 ALD에 의해 성장된 ZnO channeal layer의 두께에 대한 영향

  • An, Cheol-Hyeon;U, Chang-Ho;Hwang, Su-Yeon;Lee, Jeong-Yong;Jo, Hyeong-Gyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.41-41
    • /
    • 2009
  • We utilized atomic layer deposition (ALD) for the growth of the ZnO channel layers in the oxide thin-film-transistors (TFTs) with a bottom-gate structure using a $SiO_2/p-Si$ substrate. For fundamental study, the effect of the channel thickness and thermal treatment on the TFT performance was investigated. The growth modes for the ALD grown ZnO layer changed from island growth to layer-by-layer growth at thicknesses of > 7.5 nm with highly resistive properties. A channel thickness of 17 nm resulted in the good TFT behavior with an onloff current ratio of > $10^6$ and a field effect mobility of 2.9 without the need for thermal annealing. However, further increases in the channel thickness resulted in a deterioration of the TFT performance or no saturation. The ALD grown ZnO layers showed reduced electrical resistivity and carrier density after thermal treatment in oxygen.

  • PDF

A study on the algal growth-related water quality of the Dongbok laka

  • Kim, Jong-Min;Kim, Hyun-Ku;Huh, Yu-Jeong;Jeong, Jong-Bum
    • Proceedings of the Korea Society of Environmental Biology Conference
    • /
    • 2004.05a
    • /
    • pp.25-25
    • /
    • 2004
  • We studied algal growth-related water quality of the Dongbok lake which is the drinking water reservoir for the Gwangju municipality. Peridinium cinctum and several diatomic algal species frequently caused water bloom throughout the lake from early spring to late autumn. With the heaviest predominance of Peridinium cintum in May 2003, COD was 13.7 mg/I in the surface layer. Highly turbid surface water with 46.8 mg/I of SS was also caused by Perdinium bloom. Peridinium bloom decisively eliminated cyanobacterial growth in the lake, otherwise cyanobacterial bloom resulted. Dense algal layer was confined in the upper several meters of the water column above the thermocline, which gives relatively algae-free water in deeper layer suitable for drinking source water supply. Upon collapse of thermocline, water quality of the surface layer was improved while deeper layer was deteriorated in terms of water quality. This paper deals with some details of water quality changes with algal growth in the Dongbok lake past two years.

  • PDF

A study of CuCl$_{x}$ growth mechanism and etching with Cl$_2$ plasma and PEt$_3$(Tri-ethyl phospine) (Cl$_2$ 플라즈마를 인가한 CuCl$_{x}$성장 및 PEt$_3$를 이용한 CuCl$_{x}$의 식각에 대한 연구)

  • 박성언;김기범
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.2
    • /
    • pp.111-120
    • /
    • 1997
  • The growth kinetion of $CuCl_x$ layer on Cu was investigated using $Cl_2$ gas with/without plasma. The etching kinetics ofit was also studied, in which PEt3 gas as well as $Cl_2$ gas were used. when plasma and DC bias were applied, not only the growth rate of $CuCl_x$ layer but also the surface concentration of Cl in $CuCl_x$ layer drastically increased. The growth mode is divided into three regimes, where the thinkness $CuCl_x$ layer ise proportional to t, lo9g $T^{1/2}$ , respectively, whether plasma, is applied or not. These three regime. It is also identified that the eath rate of Cu is drastically increased as the $Cl_2$ pressure is increased. However, when plasma and DC bias were applied, the etching rate is decreased, and ClCu-P-U layer is formed. in addition, as the etching time is increased, the surface concentration of Cl is increased and $CuCl_2$ formed partially.

  • PDF

The properties of AlGaN epi layer grown by HVPE (HVPE에 의해 성장된 AlGaN epi layer의 특성)

  • Jung, Se-Gyo;Jeon, Hun-Soo;Lee, Gang-Seok;Bae, Seon-Min;Yun, Wi-Il;Kim, Kyoung-Hwa;Yi, Sam-Nyung;Yang, Min;Ahn, Hyung-Soo;Kim, Suck-Whan;Yu, Young-Moon;Cheon, Seong-Hak;Ha, Hong-Ju
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.1
    • /
    • pp.11-14
    • /
    • 2012
  • The AlGaN layer has direct wide bandgaps ranging from 3.4 to 6.2 eV. Nowadays, it is becoming more important to fabricate optical devices in an UV region for the many applications. The high quality AlGaN layer is necessary to establish the UV optical devices. However, the growth of AlGaN layer on GaN layer is difficult due to the lattice mismatch and difference thermal expansion coefficient between GaN layer and AlGaN layer. In this paper, we attempted to grow the LED structure on GaN template by mixed-source HVPE method with multi-sliding boat system. We tried to find the optical and lattice transition of active layer by control the Al content in mixed-source. For the growth of epi layer, the HCl and $NH_3$ gas were flowed over the mixed-source and the carrier gas was $N_2$. The temperature of source zone and growth zone was stabled at 900 and $1090^{\circ}C$, respectively. After the growth, we performed the x-ray diffraction (XRD) and electro luminescence (EL) measurement.

Morphology Control of ZnO Nanostructures by Surfactants During Hydrothermal Growth (수열합성중 계면활성제를 이용한 ZnO 나노구조 형상 제어)

  • Park, Il-Kyu
    • Journal of Powder Materials
    • /
    • v.23 no.4
    • /
    • pp.270-275
    • /
    • 2016
  • We report on an all-solution-processed hydrothermal method to control the morphology of ZnO nanostructures on Si substrates from three-dimensional hemispherical structures to two-dimensional thin film layers, by controlling the seed layer and the molar contents of surfactants during their primary growth. The size and the density of the seed layer, which is composed of ZnO nanodots, change with variation in the solute concentration. The ZnO nanodots act as heterogeneous nucleation sites for the main ZnO nanostructures. When the seed layer concentration is increased, the ZnO nanostructures change from a hemispherical shape to a thin film structure, formed by densely packed ZnO hemispheres. In addition, the morphology of the ZnO layer is systematically controlled by using trisodium citrate, which acts as a surfactant to enhance the lateral growth of ZnO crystals rather than a preferential one-dimensional growth along the c-direction. X-ray diffraction and energy dispersive X-ray spectroscopy results reveal that the ZnO structure is wurtzite and did not incorporate any impurities from the surfactants used in this study.

Growth Kinetics of Intermetallic Compound on Sn-3.5Ag/Cu, Ni Pad Solder Joint with Isothermal Aging (등온시효에 따른 Sn-3.5Ag 솔더 접합부의 금속간 화합물 성장에 관한 연구)

  • 이인영;이창배;정승부;서창제
    • Journal of Welding and Joining
    • /
    • v.20 no.1
    • /
    • pp.97-102
    • /
    • 2002
  • The growth kinetics of intermetallic compound layers formed between the eutectic Sn-3.5Ag solder and the Cu and Ni/Cu pad by solid stateisothermal aging were examined. The interfacial reaction between the eutectic Sn-3.5Ag solder and the Cu and Ni/Cu pad was investigated at 70, 120, 150, $170^{\circ}C$ for various times. The intermetallic compound layer was composed of two phase: $Cu_6Sn_5$(${\varepsilon}-phase$) adjacent to the solder and $Cu_6Sn_5$(${\varepsilon}-phase$) adjacent to the copper and on solder/Ni pad the intermetallic compound layer was $Ni_3Sn_4$. Because the values of time exponent(n) have approximately 0.5, the layer growth of the intermetallic compound was mainly controlled by volume diffusion over the temperature range studied. The apparent activation energy for layer growth of total Cu-Sn($Cu_6Sn_5 + Cu_6Sn$), $Cu_6Sn_5$, $Cu_3Sn$ and $Ni_3Sn_4$ intermetallic compound were 64.82kJ/mol, 48.53kJ/mol, 89.06kJ/mol and 71.08kJ/mol, respectively.

The Study of Si homoepitaxial growth on Si(111) Surface (Si(111)표면 위에서 Si의 동종층상성장에 관한 연구)

  • Kwak, Ho-Weon;moon, Byung-yeon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.4
    • /
    • pp.349-354
    • /
    • 2004
  • The growth mode of the Si layers which were grown on Si(111) by using Ag as surfactant were investigated by intensity oscillations of the RHEED specular spot at the different temperatures. we found that the introduction of Ag as the surfactant alters the growth mode from a three-dimensional clustering mechanism to a two-dimensional layer-by-layer growth. In the growth of Si layers on Si(111) with a surfactant Ag, At $450^{\circ}C$, RHEED intensity oscillation was very stable and periodic from early stage of deposition to 32 ML. RHEED patterns during homoepitaxial growth at $450^{\circ}C$ was changed from $7{\times}7$ structure into ${\sqrt{3}}{\times}{\sqrt{3}}$ structures. Since the ${\sqrt{3}}{\times}{\sqrt{3}}$ structure include no stacking fault, the stacking fault layer seems to be reconstructed into normal stacking one at transition from the $7{\times}7$ structure to a ${\sqrt{3}}{\times}{\sqrt{3}}$ one. We also found that the number of the intensity oscillation of the specular spot for Si growth with a surfactant Ag was more than for Si growth without a surfactant. This result may be explained that the activation energy decrease for the surface diffusion of Si atoms due to segregation of the surfactant toward the growing surface.

  • PDF

Investigation of carbon nanotube growth termination mechanism by in-situ transmission electron microscopy approaches

  • Kim, Seung Min;Jeong, Seojeong;Kim, Hwan Chul
    • Carbon letters
    • /
    • v.14 no.4
    • /
    • pp.228-233
    • /
    • 2013
  • In this work, we report in-situ observations of changes in catalyst morphology, and of growth termination of individual carbon nanotubes (CNTs), by complete loss of the catalyst particle attached to it. The observations strongly support the growth-termination mechanism of CNT forests or carpets by dynamic morphological evolution of catalyst particles induced by Ostwald ripening, and sub-surface diffusion. We show that in the tip-growth mode, as well as in the base-growth mode, the growth termination of CNT by dissolution of catalyst particles is plausible. This may allow the growth termination mechanism by evolution of catalyst morphology to be applicable to not only CNT forest growth, but also to other growth methods (for example, floating-catalyst chemical vapor deposition), which do not use any supporting layer or substrate beneath a catalyst layer.