Browse > Article
http://dx.doi.org/10.4150/KPMI.2016.23.4.270

Morphology Control of ZnO Nanostructures by Surfactants During Hydrothermal Growth  

Park, Il-Kyu (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Journal of Powder Materials / v.23, no.4, 2016 , pp. 270-275 More about this Journal
Abstract
We report on an all-solution-processed hydrothermal method to control the morphology of ZnO nanostructures on Si substrates from three-dimensional hemispherical structures to two-dimensional thin film layers, by controlling the seed layer and the molar contents of surfactants during their primary growth. The size and the density of the seed layer, which is composed of ZnO nanodots, change with variation in the solute concentration. The ZnO nanodots act as heterogeneous nucleation sites for the main ZnO nanostructures. When the seed layer concentration is increased, the ZnO nanostructures change from a hemispherical shape to a thin film structure, formed by densely packed ZnO hemispheres. In addition, the morphology of the ZnO layer is systematically controlled by using trisodium citrate, which acts as a surfactant to enhance the lateral growth of ZnO crystals rather than a preferential one-dimensional growth along the c-direction. X-ray diffraction and energy dispersive X-ray spectroscopy results reveal that the ZnO structure is wurtzite and did not incorporate any impurities from the surfactants used in this study.
Keywords
ZnO nanostructures; Hemisphere; Hydrothermal growth; Surfactant;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. Xu and Z. L. Wang: Nano Research, 4 (2011) 1013.   DOI
2 Y. W. Heo, D. P. Norton, L. C. Tien, Y. Kwon, B. S. Kang, F. Ren, S. J. Pearton and J. R. LaRoche: Mat. Sci. Eng. R, 47 (2004) 1.   DOI
3 Z. L. Wang and J. Song: Science, 312 (2006) 242.   DOI
4 S. H. Baek and I. K. Park: J. Korean Powder Metall. Inst., 22 (2015) 331.   DOI
5 J. H. Lim, D. K. Hwang, M. K. Kwon, I. K. Park, S. Na and S. J. Park: phys. stat. sol. (c), 2 (2005) 2533.   DOI
6 Y. S. Lee, S. N. Lee and I. K. Park: Ceramics International, 39 (2013) 3043.   DOI
7 S. H. Baek and I. K. Park: J. Korean Powder Metall. Inst., 22 (2015) 391 (Korean).   DOI
8 K. S. Kim, H. Song, S. H. Nam, S. M. Kim, H. Jeong, W. B. Kim and G. Y. Jung: Adv. Mater., 24 (2012) 792.   DOI
9 Y. I. Jung, B. Y. Noh, Y. S. Lee, S. H. Baek, J. H. Kim and I. K. Park: Nanoscale Res. Lett., 7 (2012) 43.   DOI
10 S. Cho, J. W. Jang, S. H. Jung, B. R. Lee, E. Oh and K. H. Lee: Langmuir, 25 (2009) 3825.   DOI
11 S. Cho, J. W. Jang, S. H. Jung, B. R. Lee, E. Oh and K. H. Lee: Langmuir, 27 (2011) 371.   DOI
12 P. Che, D. Fang, D. Zhang, J. Feng, J. Wang, N. Hu and J. Meng: J. Coord. Chem., 58 (2005) 1581.   DOI
13 S. Das, K. Dutta and A. Pramanik: CrystEngComm, 15 (2013) 6349.   DOI
14 R. Wahab, Y. S. Kim and H. S. Shin: Mater. Trans., 50 (2009) 2092.   DOI