• Title/Summary/Keyword: Layer Angle

Search Result 1,156, Processing Time 0.026 seconds

Simplified Ground-type Single-plate Electrowetting Device for Droplet Transport

  • Chang, Jong-Hyeon;Kim, Dong-Sik;Pak, James Jung-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.402-407
    • /
    • 2011
  • The current paper describes a simpler ground-type, single-plate electrowetting configuration for droplet transport in digital microfluidics without performance degradation. The simplified fabrication process is achieved with two photolithography steps. The first step simultaneously patterns both a control electrode array and a reference electrode on a substrate. The second step patterns a dielectric layer at the top to expose the reference electrode for grounding the liquid droplet. In the experiment, a $5{\mu}m$ thick photo-imageable polyimide, with a 3.3 dielectric constant, is used as the dielectric layer. A 10 nm Teflon-AF is coated to obtain a hydrophobic surface with a high water advancing angle of $116^{\circ}$ and a small contact angle hysteresis of $5^{\circ}$. The droplet movement of 1 mM methylene blue on this simplified device is successfully demonstrated at control voltages above the required 45 V to overcome the contact angle hysteresis.

Exchange Bias Coupling Depending on Uniaxial Deposition Field of Antiferromagnetic FeMn Layer

  • Lee, Sang-Suk;Hwang, Do-Guwn
    • Journal of Magnetics
    • /
    • v.15 no.1
    • /
    • pp.17-20
    • /
    • 2010
  • The relationship between ferromagnet anisotropic magnetization and the antiferromagnet atomic spin configuration was investigated for various angles of the uniaxial deposition magnetic field of the FeMn layer in the Corning glass/Ta(5nm)/NiFe(7nm)/FeMn(25nm)/Ta(5nm) multilayer that was prepared by the ion beam sputter deposition. The exchange bias field ($H_{ex}$) obtained from the measurement of the easy-axis MR loop decreased to 40 Oe at the deposition field angle of $45^{\circ}$, and to 0 Oe at the angle of $90^{\circ}$. When the difference between the uniaxial axis between the ferromagnet NiFe and the antiferromagnet FeMn was $90^{\circ}$, the strong antiferromagnetic dipole moment of FeMn caused the weak ferromagnetic dipole moment of NiFe to rotate in the interface.

Application of Small Angle Neutron Scattering to Determine Nano-size Cracks in Trivlent Chromium Layers (3가 크롬 박막 내의 극미세 결함 측정을 위한 중성자 소각 산란법의 적용)

  • Choi, Yong
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.3
    • /
    • pp.175-178
    • /
    • 2004
  • The size and number of nano-size defects of thin trivalent chrome layers were determined by small angle neutron scattering (SANS) without breaking the thin chrome layers. Most of defect size of the trivalent chromium prepared in this test conditions is in the range of about 40nm. The number of nano-size defects less than about 40nm of the trivalent chromium layer increases with plating voltage at constant current density From this study, SANS is proved as one of useful techniques to evaluate nano-size defects of thin film layer.

Vertical Alignment of Nematic Liquid Crystal on the SiC Thin Film Layer with Ion-beam Irradiation

  • Oh, Yong-Cheul;Lee, Dong-Gyu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.6
    • /
    • pp.301-304
    • /
    • 2006
  • We studied the nematic liquid crystal (NLC) aligning capabilities using the new alignment material of the SiC (Silicon Carbide) thin film. The SiC thin film exhibits good chemical and thermal stability. The good thermal and chemical stability make SiC an attractive candidate for electronic applications. A vertical alignment of nematic liquid crystal by atomic beam exposure on the SiC thin film surface was achieved. The about $87^{\circ}$ of stable pretilt angle was achieved at the range from $30^{\circ}\;to\;45^{\circ}$ of incident angle. Consequently, the vertical alignment effect of liquid crystal electro-optical characteristic by the atomic beam alignment method on the SiC thin film layer can be achieved.

Characteristic Analysis of Electrowetting on Dielectric Layer (절연층에 따른 액적의 전기습윤 특성 분석)

  • Choi, Jin Ho;Kim, Gyu man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.8
    • /
    • pp.38-43
    • /
    • 2019
  • Electrowetting on dielectric (EWOD) is a unique method of shape control of small-volume droplets in microfluidic biochips that relies on modification of surface wetting characteristics using electrical methods. In this study, the droplet shape control on various dielectric surfaces by the EWOD and the effect of droplets on the contact angle as well as the shape were investigated. The droplet used in the experiment was on a sample substrate with $5{\mu}l$ of de-ionized water (DIW) using a micropipette, and wettability was measured with a contact angle meter. This study is expected to be helpful for the development of various micro-total-analysis-systems (${\mu}TAS$) and microfluidic systems with MEMS technology.

Design of Surface Plasmon Resonance Sensor with Bruggeman Effective Medium Layers (브러그만 유효 굴절 박막에서의 표면 플라즈몬 공명 센서 설계)

  • Bae, Young-Gyu;Lee, Seung-Yeol
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.118-122
    • /
    • 2020
  • This paper proposes a specific sensor-design strategy and the possibility of improving the sensing performance, which can be obtained by replacing part of the existing plasmonic sensor based on the Kretschmann configuration method with an effective refractive-index layer. By replacing the metal layer with an effective refractive-index layer composed of gold and the material to be sensed, an improvement in the detection performance, accompanied by an increase in the sensed incident angle, is observed, and the gold-composition ratio that demonstrates the best result is presented. Subsequently, an increase in the sensed incident angle generated in the previous step can be suppressed by randomly etching a portion of the prism adjacent to the metal layer in a sub-wavelength scale. Finally, this study analyzes the optimization of the metal-layer thickness in a given sensor structure. An effective refractive thin-film surface plasmon resonance sensor design that can achieve optimal sensing performance is then proposed.

Study in Minimum of Edge Bump using the Chamfer Angle in Blu-ray Disc Cover layer Spin Coating Process (블루레이 디스크의 커버 레이어 스핀코팅 시 챔퍼각을 이용한 끝단 범프 최소화 연구)

  • Lee, H.G.;Son, S.K.;Cho, K.C.;Shin, H.G.;Kim, B.H.
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.3
    • /
    • pp.178-183
    • /
    • 2006
  • A Blu-ray disc, which has a more than 25GB optical capacity, has been known as a promising next-generation optical disc format. It commonly has a 1.1 mm thick substrate and a 0.1 mm thick cover layer for beam transmitting and the protection of the reflecting surface. The cover layer is generally formed by the spin coating process. However, in conventional spin coating, small bumps are formed along the rim of the disc, which results in the fatal reading error. Numerical simulation of the thin film flow behaviors during spin coating with the commercial solver and optimal spinning conditions was obtained. Thickness distribution of the cover layer according to the variation of substrate's edge shape could be calculated as well. By modifying the shape of the substrate edge shape, the bumps along the disc rim could be minimized, and it was proved that the chamfered edge, around $5{\sim}10$ degree, is the simplest and most effective way to minimize the bumps.

  • PDF

X-Ray Reflectivity Analysis Incorporated with Genetic Algorithm to Analyze the Y- to X Type Transition in CdA LB Film

  • 최정우;조경상;이희우;이원홍;이한섭
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.5
    • /
    • pp.549-553
    • /
    • 1998
  • The structure and layer distribution of cadmium arachidate Langmuir-Blodgett film were analyzed by the small angle X-ray reflectivity measurements using synchrotron radiation. Y-to X type transition was ocurred during the 39th passage of deposition of cadmium arachidate. Based on the measurement of the consumed area of the monolayer, it was determined that about 27.5 layer was deposited. Using the synchrotron X-ray, the reflectivity profile of cadmium arachidate LB film over the wide range of grazing angle was obtained. The X-ray reflectivity profile was analyzed using the recursion formula. By fitting the location and dispersion of the subsidiary maxima between the Bragg peaks of the measured reflectivity profile with that of the calculated reflectivity profile, the average thickness and the distribution of layer thickness were evaluated. The genetic algorithm was adopted to the fitting of reflectivity profile to evaluate the optimum value of the number distribution of layer. Based on the morphology measurement with an atomic force microscopy (AFM), the domain structure and mean roughness of LB films were obtained. The mean roughness value calculated based on the number of layer distribution obtained from the measurement by AFM is consistent with that obtained from X-ray reflectivity analysis.

Effect of Native Oxide Layer on the Water Contact Angle to Determine the Surface Polarity of SiC Single Crystals (접촉각 측정방법을 이용한 SiC 단결정의 극성표면 판별에 있어 자연산화막의 영향)

  • Park, Jin Yong;Kim, Jung Gon;Kim, Dae Sung;Yoo, Woo Sik;Lee, Won Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.3
    • /
    • pp.245-248
    • /
    • 2020
  • The wettability of silicon carbide (SiC) crystal, which has 6H-SiC and 4H-SiC regions prepared using the physical vapor transport (PVT) method, is quantitatively analyzed using dispensed deionized (DI) water droplets. Regardless of the polytypes in SiC, the average of five contact angle measurements showed a difference of about 6° between the Si-face and C-face. The contact angle on the Si-face (C-face) is measured after the removal of the native oxide using BOE (6:1), and revealed a significant decrease of the contact angle from 74.9° (68.4°) to 47.7° (49.3°) and from 75.8° (70.2°) to 51.6° (49.5°) for the 4H-SiC and 6H-SiC regions, respectively. The contact angle of the Si-face recovered over time during room temperature oxidation in air; in contrast, that of the C-face did not recover to the initial value. This study shows that the contact angle is very sensitive to SiC surface polarity, specific surface conditions, and process time. Contact angle measurements are expected to be a rapid way of determining the surface polarity and wettability of SiC crystals.

LC Aligning Capabilities by Ion Beam Exposure on a Diamond-like Carbon Surface

  • Jo, Yong-Min;Hwang, Jeoung-Yeon;Seo, Dae-Shik;Rho, Soon-Joon;Baik, Hong-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.508-510
    • /
    • 2002
  • We studied the liquid crystal (LC) alignment capabilities and the generation of pretilt angles with ion beam exposure on a diamond like carbon (DLC) layer. A high pretilt angle of 3.5$^{\circ}$ with ion beam exposure on the DLC layer can be obtained. A high pretilt angle in NLC by ion beam alignment method on the DLC layer can be achieved.

  • PDF