• Title/Summary/Keyword: Launch vehicle

Search Result 789, Processing Time 0.036 seconds

Test-bed Design for the Evaluation of Wireless Communication System on Small Launch Vehicle (소형 발사체 무선 통신시스템 검증을 위한 테스트 베드 설계)

  • Lee, Dae-Hyun;Oh, TaeckKeun;Park, Dong-Hwa;Lee, Hong-Ki;Park, Dong-Hyun;Song, Ho-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.4
    • /
    • pp.311-318
    • /
    • 2018
  • In this paper, test-bed for the evaluation of wireless communication system on a small launch vehicle is proposed. The proposed test-bed consists of antenna test-coupler, RF attenuators, and RF switch modules. The antenna test-coupler isolates antennas for each band and transmits / receives wireless signals. The RF attenuator and switch are used for path selection of testing signal path. In design and measurement result of the antenna test-coupler, the antenna test-coupler has shielding effect higher than 39.3, 47.1, 56.1 dB at UHF-, S-, X-band. Through testing on small launch vehicle wireless communication system, we were able to successfully transmit and receive data between each test system and launch vehicle with antenna path switching.

Development of Configuration Management Methodology for Rocket Development Test Facilities (발사체 개발 시험시설의 형상관리 방법론 개발)

  • Jeon, Chanmin;Choi, Minchan;Park, Taekeun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.3
    • /
    • pp.31-41
    • /
    • 2023
  • This study is a study to develop a configuration management methodology for efficient and systematic management in the event of configuration changes such as deformation, explosion, and remodeling of launch vehicle development test facilities, which are emerging as important national facilities in the era of full-scale space competition. Through the analysis of international standards for configuration management, a configuration management process framework to be applied to launch vehicle development test facilities is extracted, a survey was conducted on experts who performed life cycle engineering of launch vehicle development test facilities, and a configuration management methodology optimized for operation/management of domestic launch vehicle development test facilities was proposed. Identify the configuration for launch vehicle development test facilities, the configuration management manager, configuration management organization, and configuration management board approve/process the configuration changes, and after construction is completed according to design requirements, launch vehicle development test facilities try to manage the configuration in a controlled state.

The Preliminary EMC Analysis Between the COMS RE and the GEO Launch Vehicles RS (통신해양기상위성 복사방출과 정지궤도 발사체 복사감응과의 전자파 적합성 해석)

  • Kim, Eui-Chan;Lee, Seung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.774-778
    • /
    • 2010
  • In this paper, the preliminary EMC analysis process between the Communication, Ocean and Meteorological Satellite (COMS) and the Geostationary Earth Orbit (GEO) launch vehicles in the frequency range is described. The considered launch vehicles are Arian Ⅴ, Sea Launch, Land Launch, Atlas III&Ⅴ, Delta IV, Proton M/breeze M, Soyuz, H II-Aa. The launch vehicle Radiated Susceptibility (RS) specifications have been compared to COMS satellite Radiated Emission (RE) limits. The COMS Radiated Emission (RE) level is determined by calculating the radiated field equal to the quadratic sum of radiated emissions of each equipment switched "ON" during launch. As a result, The RS requirements of Arian V, Atlas III&V and Delta IV lauchers are compliant with COMS RE limits. The negative margins appear between the others launch vehicle RS (Sea Launch, Land Launch, Proton M/Breeze M, Soyuz and H II-A) and COMS RE. Then, if the launchers that have negative margin were chosen by the customer, The EMC tests should be performed at satellite level in order to demonstrate the compatibility with respect to launch vehicles requirements.

A Study on the Estimation of Launch Success Probability for Space Launch Vehicles Using Bayesian Method (베이지안 기법을 적용한 우주발사체의 발사 성공률 추정에 관한 연구)

  • Yoo, Seung-Woo;Kim, In-Gul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.7
    • /
    • pp.537-546
    • /
    • 2020
  • The reliability used as a performance indicator during the development of space launch vehicle should be validated by the launch success probability, and the launch data need to be fed back for reliability management. In this paper, the launch data of space launch vehicles around the world were investigated and statistically analyzed for the success probabilities according to the launch vehicle models and maturity. The Bayesian estimation of launch success probability was reviewed and analyzed by comparing the estimated success probabilities using several prior distributions and the statistical success probability. We presented the method of generating prior distribution function and considerations for Bayesian estimation.

Impacts of Payload Weights on the Cost Effectiveness of Reusable Launch Vehicles (재사용발사체의 비용 효용성에 미치는 임무중량의 영향)

  • Yang, Soo Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.4
    • /
    • pp.1-9
    • /
    • 2019
  • Recently, in the space market, there has been a rapid reduction of the launch price. The major reason is that a few commercial companies, especially SpaceX, began to enter into the space market about ten years ago, which has changed the space market from monopolization to competition, and accelerated the adoption of commercial efficiency in the technology and management. Also, the successful landing and recovery of a first stage in 2016 by SpaceX proved to be a prelude to opening a new era of reusable launch vehicles, and SpaceX declared the groundbreaking launch price through using the reusable launch vehicle. This study calculates the total launch cost required to put a certain satellite into the LEO, compares the launch cost in three cases with different payload weights, and reviews the impacts of the payload on the cost effectiveness of a reusable vehicle. The total launch cost is divided into 6 subsections cost, namely development cost, production cost, refurbishment cost, operation cost, fixed-cost of factory and launch site, and insurance cost. The cost estimation relationships used in the calculation are taken from the commonly proven cost models such as TRANSCOST.

Development and Performance test of Mechanical Support Equipment for Assebmly/Integration of KSLV-I (KSLV-I 총조립용 기계지원장비 개발 및 성능시험)

  • Jin, Seung-Bo;Chung, Eui-Seung
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.116-124
    • /
    • 2010
  • Ground complex composed of Assembly Complex(AC) and Launch Complex(LC) which is located on Oenarodo space center in Kohung is necessary for successful launching of KSLV-I. AC performs accepting of a KSLV-I 1st stage and 2nd stage, stage assembly, the integrated launch vehicle, the checked out, and all kinds of performance test, pre-launch tests and processing. At AC, the mechanical support equipments, that is called the technological equipments, are installed in the Launch Vehicle Assembly Test Building(LVATB). These technological equipments have diverse forms of an interface with mechanical/electric device of the launch vehicle and have to provide a condition and the performance guarantee of an optimum in the launching operation process. In this paper, the requirements specification and manufacturing performance test for the mechanical support equipments which are used in the assembly/disassembly and test of the launch vehicle are introduced.

The design of Ground Flight Termination System for Space Launch Application (위성발사를 위한 지상국비행종단지령장비 설계)

  • Lee, Sung-Hee;Bae, Young-Jo;Oh, Chang-Yul;Lee, Hyo-Keun
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.229-235
    • /
    • 2008
  • The ground flight termination system(GFTS) could be used for the termination of launch vehicle in flight motion when the launch vehicle deviates from the designated route due to the system malfunction or failure as well as the launch vehicle can't be tracked by the ground tracking system. This paper introduces the basic concept and design of the ground flight termination system to be used for KSLV launch mission in NARO space center. In order to design the optimal ground flight termination system for KSLV launch application, the operational concept reflected on the flight trajectory and system characteristics of KSLV launch vehicle should be considered. Moreover the RF link budget analysis, and the analysis for system availability and reliability are done. Based on the analysis above, the each subsystem of ground flight termination to transmit the termination signal in stable is designed for KSLV launch mission.

  • PDF

Reconstruction Analysis of Vehicle-pedestrian Collision Accidents: Calculations and Uncertainties of Vehicle Speed (차량-보행자 충돌사고 재구성 해석: 차량 속도 계산과 불확실성)

  • Han, In-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.82-91
    • /
    • 2011
  • In this paper, a planar model for mechanics of a vehicle/pedestrian collision incorporating road gradient is derived to evaluate the pre-collision speed of vehicle. It takes into account a few physical variables and parameters of popular wrap and forward projection collisions, which include horizontal distance traveled between primary and secondary impacts with the vehicle, launch angle, center-of-gravity height at launch, distance from launch to rest, pedestrian-ground drag factor, the pre-collision vehicle speed and road gradient. The model including road gradient is derived analytically for reconstruction of pedestrian collision accidents, and evaluates the vehicle speed from the pedestrian throw distance. The model coefficients have physical interpretations and are determined through direct calculation. This work shows that the road gradient has a significant effect on the evaluation of the vehicle speed and must be considered in accident cases with inclined road. In additions, foreign/domestic empirical cases and multibody dynamic simulation results are used to construct a least-squares fitted model that has the same structure of the analytical one that provides an estimate of the vehicle speed based on the pedestrian throw distance and the band within which the vehicle speed would be expected to be in 95% of cases.

Risk Management of Launch Vehicle Propulsion System (우주 발사체 추진기관의 위험 관리)

  • Cho, Sang-Yeon;Shin, Myung-Ho;Ko, Jung-Hwan;Oh, Seung-Hyub;Park, Jeong-Joo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.3-6
    • /
    • 2007
  • Korea Aerospce Research Institute(KARI) has been developing the first civilian rocket, Korea space launch vehicle (KSLV-I), which can put the small size satellite into designated orbit. Developing launch vehicles contains a lot of uncertainty due to large scale, complexity, and technical difficulty. The uncertainty may become risk in the areas of business and technology which causes schedule delay, cost increase, and design changes of subsystems and components. This study describes the technical risk identification methods using FTA and procedures of planning and implementation of risk assessment and reduction of launch vehicle propulsion system.

  • PDF

An Assessment on the Preliminary Coupled Load Analysis Results for Advanced Low Earth Orbit Earth Observation Satellite (고성능 저궤도 지구관측위성의 예비연성하중 해석결과에 대한 평가)

  • Kim, Kyung-Won;Lim, Jae-Hyuk;Kim, Sun-Won;Kim, Chang-Ho;Kim, Sung-Hoon;Hwang, Do-Soon
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.94-100
    • /
    • 2011
  • In this paper, an assessment on the preliminary coupled load analysis results for advanced Low Earth Orbit Earth Observation satellite was performed. Spacecraft FE-model was converted into Craig-Bampton model consisting of mass matrix, stiffness matrix, acceleration transformation matrix, displacement transformation matrix, and it was delivered to the launch vehicle developer. Launch vehicle developer performed a coupled load analysis with launch vehicle model and spacecraft Craig-Bampton model, and the coupled load analysis results were provided to us. From the assessment on the analysis results, it was verified that spacecraft is safe under launch environment.