• Title/Summary/Keyword: Launch Control Unit

Search Result 17, Processing Time 0.024 seconds

The Development of Launch Vehicle Simulator Using an Object-orinted Design (객체지향 설계론을 이용한 발사체 시뮬레이터 개발)

  • Choi Won;Chung Hae uk;Seo Jin-Ho;Hong Il-Hee
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2005.05a
    • /
    • pp.106-111
    • /
    • 2005
  • LCC(Launch Control Center) in NARO Space Center perform a data monitoring and control through the interface to the external system of launch vehicle. Launch Control function needs a high reliability and processing speed. Hence, LCC's remote control system configure a real time system. An important role of the Simulation system is discovering a risk element and minimize it When developing a launch control system. Also, secure a development technique to solve the risks. Launch Vehicle simulator is composed of various component at characteristic of the Launch Vehicle. To be like this each function component the developer will be able to develop easily in order, it using the LabVIEW which is a Graphical Program and it programs, The LabVIEW GOOP(Graphical Object-orinted Programming) which supports an Object-orinted programming it uses with the Component it develops will have a strong point which reusability and a unit test, maintenance, size of program and individual developments.

  • PDF

Architecture of A Launch Control Unit for the Compatibility of Weapon Systems Based on Shipboard (함정 기반 다중 무장 호환 운용을 위한 발사제어기 아키텍처)

  • Shin, JinBeom;Cho, KilSeok;Yoo, MyongHwan;Kim, TaeHyon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.176-184
    • /
    • 2020
  • In this paper, we have proposed hardware and software architecture of a launch control unit for the compatibility between air defense weapon systems loaded on shipboard. Until now, there is no compatibility between weapon systems loaded in battleships of korean navy. In the case of HaeGung system recently completed the test and evaluations, although it will be deployed on several kinds of shipboards, it has no compatibility and flexibility with other air defense weapon systems. Recently it reports that a long range air defense weapon system will be carried on future korean destroyer KDDX. Because the HaeGung and a long range air defense system will be operated together in KDDX, it is necessary to provide the compatibility between two weapon systems. So we have proposed architecture to provide the compatibility of the launch control unit that controls the launching system and the missile interface unit, and the missile in each weapon systems.

Development of Thruster for Divert Control System (궤도 수정용 추력발생장치 개발)

  • Jeon, Young-Jin;Baek, Ki-Bong;Lim, Seol;Suh, Suhk-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.364-367
    • /
    • 2011
  • The development of the DCS thrust unit during the attitude control thruster of the launch vehicle and guided missile is introduced. The DCS thrust unit using solid propellants based on a two-axis control is designed and through the thermo-structural and flow analysis is designed in detail. The performance of the thrust unit based on the detail design is demonstrated through a combustion test.

  • PDF

KSLV-I 하이드라진 추력기 제어기의 진동 해석 및 검증 시험

  • Kim, Ji-Hun;Jung, Ho-Lak;Jeon, Sang-Woon;Choi, Hyung-Don
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.203-208
    • /
    • 2005
  • Electronic components for space launch vehicles are exposed to a severe vibrational environment at launch and flight. The structural reliability of each component can be verified using mathematical approaches. In order to verify the structural reliability, an important parameter is the natural frequency of PCB(Printed Circuit Board) assembly mounted electronic components on and housing mounted PCB assembly in. In this paper, in order to find natural frequencies of PCB assemblies and the housing of hydrazine TCU(Thruster Control Unit), FEM(Finite Element Method) is adapted. The analytical result of FEM is verified by experimental method.

  • PDF

Thruster Control Unit 하우징, PCB의 정적 및 진동 해석

  • Kim, Ji-Hun;Jung, Ho-Lak;Jeon, Sang-Woon;Choi, Hyung-Don
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.124-132
    • /
    • 2004
  • This paper deals with the static and dynamic analysis of the housing and PCB of TCU(Thruster Control Unit) for KSLV-I(Korea Space Launch Vehicle-I). TCU should pass the environment test simulating the flight environment of KSLV-I. The most important tests are the vibration and the shock tests. In this research, we proposed a design standard about the vibration and the shock environment and then verified TCU housing and PCB design met the standard. Based on the analytical results, the TCU housing was redesigned to meet the design standard. The new design is supposed to pass the environment test.

  • PDF

A Study on the Vibrational Environment Test of KSLV-1 Demonstration Satellite (한국형 위성 발사체 성능 검증위성의 진동환경에 관한 연구)

  • Seo, Hyun-Suk;Kim, Hong-Bae;Woo, Sung-Hyun;Chae, Jang-Soo;Oh, Tae-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.966-970
    • /
    • 2005
  • On the basis of the development of KSLV-1, KoDSat was designed and manufactured to demonstrate the performance of KSLV-1. KoDSat is exposed to a severe vibrational environment at launch. The structural reliability of KoDSat has to be verified using vibrational test. The structural compatibility and verification of components between analysis and test can be proved using environmental vibration test. In this paper, we review the structural characteristic of thruster control unit for a space launch vehicle and design TCU housing using mathematical model. In order to verify the structural compatibility and reliability, half-sine shock, random and sing sweep vibration test was performed. Especially, sing sweep vibration test result is compared with analysis result and mathematical model is verified.

  • PDF

Study on Real-time Parallel Processing Simulator for Performance Analysis of Missiles (유도탄 성능분석을 위한 실시간 병렬처리 시뮬레이터 연구)

  • Kim Byeong-Moon;Jung Soon-Key
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.1
    • /
    • pp.84-91
    • /
    • 2005
  • In this paper, we describe the real-time parallel processing simulator developed for the use of performance analysis of rolling missiles. The real-time parallel processing simulator developed here consists of seeker emulator generating infrared image signal on aircraft, real-time computer, host computer, system unit, and actual equipments such as auto-pilot processor and seeker processor. Software is developed from mathematic models, 6 degree-of-freedom module, aerodynamic module which are resided in real-time computer, and graphic user interface program resided in host computer. The real-time computer consists of six TIC-40 processors connected in parallel. The seeker emulator is designed by using analog circuits coupled with mechanical equipments. The system unit provides interface function to match impedance between the components and processes very small electrical signals. Also real launch unit of missiles is interfaced to simulator through system unit. In order to apply the real-time parallel processing simulator to performance analysis equipment of rolling missiles it is essential to perform the performance verification test of simulator.

Structural Design of SAR Control Units for Small Satellites Based on Critical Strain Theory (임계변형률 이론에 기반한 초소형 위성용 SAR 제어부 전장품 구조설계)

  • Jeongki Kim;Bonggeon Chae;Seunghun Lee;Hyunung Oh
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.2
    • /
    • pp.12-20
    • /
    • 2024
  • The application of reinforcement design to ensure the structural safety of electronics in small satellites is limited by the spatial constraints of the satellite structure during launch vibrations. Additionally, a reliable evaluation approach is needed for mounting highly integrated devices that are susceptible to fatigue failure. Although the Steinberg fatigue failure theory has been used to assess the structural integrity of electronic devices, recent studies have highlighted its theoretical limitations. In this paper, we propose a structural methodology based on the critical strain theory to design the digital control unit (DCU) of the X-band SAR payload component for the small SAR technology experimental project (S-STEP), a small satellite constellation. To validate the design, we conducted modal and random analyses using simplified modeling techniques. Based on our methodology, we ultimately demonstrated the structural safety of the electronics through analysis results, safety margin derivation, and functional tests conducted both before and after the launch test.

Improvement of active nose control in vehicle interior using a RLS algorithm (RLS 알고리즘을 이용한 승용차 내 능동소음제어의 개선)

  • 김영욱;이윤희;김기두
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.12
    • /
    • pp.106-113
    • /
    • 1997
  • While driving, the low frequency interior noise below 200Hz causes the main component that irritates the auditory acoustic sense. But these passive control methods bring out increment in cost and weight of the vehicle and result in low efficiency. Recently, various ANC(Active Noise Control) methos to suppress the low frequency noise began to launch into application. In this study, we implemented the active noise control system for passenger vehicle to cancel the engine booming noise using DSP-based control unit, 4 micorphones, and 2 speakers. We used MEFX-LMS (Multiple Error Filtered X-Least Mean Square) algorithm since it can be easily implemented in real time. Also, MEFX-RLS algorithm was taken to enhance the suppression of the harmonic components of the engine booming noise inspite of its computational complexity. The performance of two adaptive algorithms were analyzed with experimental resutls.

  • PDF

Thermal Vacuum Test of the Phase Change Material Thermal Control Unit Loaded on the Satellite Flight Model and Thermal Model Correlation with Test Results (위성에 탑재된 상변화물질 열제어장치 비행모델의 열진공시험 및 이를 통한 열해석 모델 보정)

  • Cho, Yeon;Kim, Taig Young;Seo, Joung-Ki;Jang, Tae Seong;Park, Hong-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.10
    • /
    • pp.729-737
    • /
    • 2022
  • Melting and icing process of the PCMTCU(Phase Change Material Thermal Control Unit) installed on the NEXTSat-2, which is scheduled to be launched in the second half, was investigated through the results of satellite-level TVT(Thermal Vacuum Test). As a result of the test, it was confirmed that the latent heat of PCM contributes to the temperature stabilization of the heating components. The thermal model for numerical analysis of the PCMTCU was correlated to acquire a reasonable degree of accuracy using the collected temperature measurements during TVT. The periodic temperature variation of the PCMTCU in normal on-orbit operation was predicted with the correlated thermal model, and the quantitative contribution of the PCM on the thermal energy management was evaluated with the liquid fraction. It will receive flight telemetry from the NEXTSat-2 after the launch, and complete the space verification of the PCMTCU.