• Title/Summary/Keyword: Lattice structure

Search Result 1,137, Processing Time 0.033 seconds

A Study on Dynamic Response Analysis Algorithm of Plane Lattice Structure (평면격자형 구조물의 동적응답 해석알고리즘에 관한 연구)

  • Moon, D.H.;Kang, H.S.;Choi, M.S.;Kim, Y.B.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.575-580
    • /
    • 2000
  • Recently it is increased by degrees to construct complex and large lattice structure such as bridge, tower and crane structures. It is very important problem to know dynamic properties of such structures. Authors presented new dynamic response analysis algorithm for rectilinear structure already. This analysis algorithm is combined transfer stiffness coefficient method with Newmark method. Presented method improves the computational accuracy remarkably owing to advantage of the transfer stiffness coefficient method. This paper formulates dynamic response analysis algorithm for plane lattice structure expanding rectilinear structures.

  • PDF

Buckling Load of Lattice Timber Roof Structure considering Stiffness of Connection with Asymmetric Snow Load (접합부 강성과 비대칭 적설하중 적용을 통한 목조 래티스 지붕 구조물의 좌굴하중 특성)

  • Hwang, Kyung-Ju
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.1
    • /
    • pp.69-76
    • /
    • 2023
  • A timber lattice roof, which has around 30m span, was constructed. In order to figure out the realistic buckling load level, the structural analysis of this roof structure was performed especially by stiffness of connection with various asymmetric snow load. Due to the characteristics of application of snow load, the load combinations of snow should be considered not only global area but also local part so that the critical buckling load could be observed as easy as possible. Geometrical imperfection was simulated to consider inaccurate shape of structure. And then nonlinear analysis were performed. Finally, this paper could investigate that the asymmetric snow load with the lower level stiffness of connection decreased the level of buckling load significantly.

Experimental study on mechanical performances of lattice steel reinforced concrete inner frame with irregular section columns

  • Xue, Jianyang;Gao, Liang;Liu, Zuqiang;Zhao, Hongtie;Chen, Zongping
    • Steel and Composite Structures
    • /
    • v.16 no.3
    • /
    • pp.253-267
    • /
    • 2014
  • Based on the test on a 1/2.5-scaled model of a two-bay and three-story inner frame composed of reinforced concrete beams and lattice steel reinforced concrete (SRC) irregular section columns under low cyclic reversed loading, the failure process and the features of the frame were observed. The subsequence of plastic hinges of the structure, the load-displacement hysteresis loops and the skeleton curve, load bearing capacity, inter-story drift ratio, ductility, energy dissipation and stiffness degradation were analyzed. The results show that the lattice SRC inner frame is a typical strong column-weak beam structure. The hysteresis loops are spindle-shaped, and the stiffness degradation is insignificant. The elastic-plastic inter-story deformation capacity is high. Compared with the reinforced concrete frame with irregular section columns, the ductility and energy dissipation of the structure are better. The conclusions can be referred to for seismic design of this new kind of structure.

Parasitic Inductance Reduction Design Method of Vertical Lattice Loop Structure for Stable Driving of GaN HEMT (GaN HEMT의 안정적 구동을 위한 수직 격자 루프 구조의 기생 인덕턴스 저감 설계 기법)

  • Yang, Si-Seok;Soh, Jae-Hwan;Min, Sung-Soo;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.3
    • /
    • pp.195-203
    • /
    • 2020
  • This paper presents a parasitic inductance reduction design method for the stable driving of GaN HEMT. To reduce the parasitic inductance, we propose a vertical lattice loop structure with multiple loops that is not affected by the GaN HEMT package. The proposed vertical lattice loop structure selects the reference loop and designs the same loop as the reference loop by layering. The design reverses the current direction of adjacent current paths, increasing magnetic flux cancellation to reduce parasitic inductance. In this study, we validate the effectiveness of the parasitic inductance reduction method of the proposed vertical lattice loop structure.

Numerical Analysis of Optimum Door Frame for Enhancing Thermal Efficiency (한옥 창호 격자 구조의 전산해석을 통한 한옥 에너지 효율 향상 방안)

  • Ahn, Eun-Young;Kim, Jae-Won
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.5
    • /
    • pp.672-676
    • /
    • 2012
  • This investigation relates generally to windows and doors for traditional Korean houses(Hanok) and, more particularly, to windows and doors for traditional Korean houses which have a lattice structure that can minimize heat loss in the winter. In order to accomplish the above objective, the present invention provides a door for traditional Korean houses, including a structure of a lattice door framed with vertical lattice frames and horizontal lattice frames which are arranged in a regular periodic pattern.

Forced Vibration Analysis of Lattice Type Structure by Transfer Stiffness Coefficient Method (전달강성계수법에 의한 격자형 구조물의 강제진동 해석)

  • 문덕홍;최명수
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.949-956
    • /
    • 1998
  • Complex and large lattice type structures are frequently used in design of bridge, tower, crane and aerospace structures. In general, in order to analyze these structures we have used the finite element method(FEM). This method is the most widely used and powerful method for structural analysis lately. However, it is necessary to use a large amount of computer memory and computational time because the FEM requires many degrees of freedom for solving dynamic problems exactly for these complex and large structures. For analyzing these structures on a personal computer, the authors developed the transfer stiffness coefficient method(TSCM). This method is based on the concept of the transfer of the nodal dynamic stiffness coefficient matrix which is related to force and displacement vector at each node. And we suggested TSCM for free vibration analysis of complex and large lattice type structures in the previous report. In this paper, we formulate forced vibration analysis algorithm for complex and large lattice type structures using extened TSCM. And we confirmed the validity of TSCM through computational results by the FEM and TSCM, and experimental results for lattice type structures with harmonic excitation.

  • PDF

The Effect of Fiber Volume Fraction Non-uniformity through Thickness Direction on the Torsional Buckling Load of Cylindrical Composite Lattice Structure (두께방향 섬유체적비 불균일이 원통형 복합재 격자 구조의 비틀림 좌굴 하중에 미치는 영향)

  • Min-Hyeok Jeon;Hyun-Jun Cho;Yeon-Ju Kim;Mi-Yeon Lee;In-Gul Kim
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.80-85
    • /
    • 2023
  • A cylindrical composite lattice structure is manufactured by filament winding. The distribution of nonuniform fiber volume fraction induced by the manufacturing process can be observed. The stiffness and buckling characteristics can be influenced by non-uniform fiber volume fraction. In this paper, the effect of non-uniform fiber volume fraction through thickness direction on the torsional buckling load of the cylindrical composite lattice structure was examined. The stiffness variation induced by the non-uniform fiber volume fraction was applied to the finite element model, and buckling analysis was performed. The variations of buckling load with variations of fiber volume fraction were compared. The non-uniform fiber volume fraction reduced the torsional buckling load of the composite lattice structure.

Design of Real-Time Adaptive Lattice Predictor Using (DSP를 이용한 실시간 적응격자 예측기 설계)

  • 김성환;홍기룡;홍완희
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.2
    • /
    • pp.119-124
    • /
    • 1988
  • Real-time adaptive lattice predictor was implemented on the TMS32020 DSP chip for digital signal processing. The implemented system was composed of Input-Output units and centrla processing-control unit and its supporting assembly soft ware. The performance of hardware realization was verified by comparing input signal and one-step prediction signal which are calcualted by the real-time adaptive lattice predictor. As a result, for 4 stage lattice structure, the maximum running frequency was obtained as 6.41 KHz in this experiment.

  • PDF

Vocal Tract Modeling with Unfixed Sectionlength Acoustic Tubes(USLAT) (비고정 구간 길이 음향 튜브를 이용한 성도 모델링)

  • Kim, Dong-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1126-1130
    • /
    • 2010
  • Speech production can be viewed as a filtering operation in which a sound source excites a vocal tract filter. The vocal tract is modeled as a chain of cylinders of varying cross-sectional area in linear prediction acoustic tube modeling. In this modeling the most common implementation assumes equal length of tube sections. Therefore, to model complex vocal tract shapes, a large number of tube sections are needed. This paper proposes a new vocal tract model with unfixed sectionlengths, which uses the reduced lattice filter for modeling the vocal tract. This model transforms the lattice filter to reduced structure and the Burg algorithm to modified version. When the conventional and the proposed models are implemented with the same order of linear prediction analysis, the proposed model can produce more accurate results than the conventional one. To implement a system within similar accuracy level, it may be possible to reduce the stages of the lattice filter structure. The proposed model produces the more similar vocal tract shape than the conventional one.

Dynamic Stability of Particle-Lattice Structures Simulating Swarms in Turbulence (군집을 모사한 입자-격자 구조의 난류 내 동적 안정성)

  • Oh, Jeong Suk;Yoon, Sung Gun;Park, Han June;Hwang, Wontae
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.3
    • /
    • pp.32-38
    • /
    • 2019
  • The dynamic stability of swarms is crucial in preventing collisions in clustered flights and safely moving along a defined path. Although there have been many simulation studies on dynamic stability, there have not been many experimental studies using real clusters due to the difficulty in implementation. In this study, we constructed a particle-lattice structure simulating bird flocks or drone swarms, and conducted experiments within turbulent flow. We identified a criterion that describes dynamically stable particle-lattice structures. The stability increased as this newly defined spatial index increased.