• Title/Summary/Keyword: Lattice structure

Search Result 1,131, Processing Time 0.033 seconds

Parametric study of the energy absorption capacity of 3D-printed continuous glass fiber reinforced polymer cruciform honeycomb structure

  • Hussain Gharehbaghia;Amin Farrokhabadi
    • Steel and Composite Structures
    • /
    • v.49 no.4
    • /
    • pp.393-405
    • /
    • 2023
  • In this paper, the energy absorption capability of a novel cruciform composite lattice structure was evaluated through the simulation of compression tests. For this purpose, several test samples of Polylactic acid cellular reinforced with continuous glass fibers were prepared for compression testing using the additive manufacturing method of material extrusion. Using a conventional path design for material extrusion, multiple debonding is probable to be occurred at the joint regions of adjacent cells. Therefore, an innovative printing path design was proposed for the cruciform lattice structure. Afterwards, quasistatic compression tests were performed to evaluate the energy absorption behaviour of this structure. A finite element model based on local material property degradation was then developed to verify the experimental test and extend the virtual test method. Accordingly, different combinations of unit cells' dimensions using the design of the experiment were numerically proposed to obtain the optimal configuration in terms of the total absorbed energy. Having brilliant energy absorption properties, the studied cruciform lattice with its optimized unit cell dimensions can be used as an energy absorber in crashworthiness applications. Finally, a cellular structure will be suitable with optimal behavior in crush load efficiency and high energy absorption.

An Experimental Study on the Characteristics of a Composite Structure of Lattice Girder and Shotcrete (격자지보와 숏크리트 복합구조체의 특성 실험 연구)

  • Mun, Hong-Deuk;Baek, Yeong-Sik;Bae, Gyu-Jin
    • Geotechnical Engineering
    • /
    • v.13 no.2
    • /
    • pp.155-168
    • /
    • 1997
  • Lattice girder is a new steel support developed in Europe for the replacement of an existing H-shaped steel set, which is installed after tunnel excavation. Lattice girder has the following several advantages : 1. Lattice girder minimizes the amount of shotcrete shadow which happens to occur behind a steel support. 2. A triangular shape of lattice girder makes shotcrete placed efficiently. 3. Lattice girder provides a good bond strength for shotcrete, which makes the composite structure of lattice girder and shotcrete behave monolithic, and therefore, the rock load can be supported effectively by the lattice girder system, This paper presents the results from a model wall test, a strength test for shotcrete shot on the model wall and a strength test for the bond between lattice girder and shotcrete. These tests proved that lattice-girder system is superior to H-shaped steel-set system concerning the shotcrete rebound rate, the developed shotcrete strength and the adhesion characteristics.

  • PDF

Verification of Finite Element Model for Composite Lattice Structures through Natural Frequency Test (고유진동수 시험을 통한 복합재 격자구조체의 유한요소모델 검증)

  • Im, Jaemoon;Shin, Kwangbok;Lee, Sangwoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.832-834
    • /
    • 2017
  • In this paper, the finite element models for composite lattice structures were verified through natural frequency test. Finite element models of composite lattice structure were generated using beam, shell and solid element. Natural frequencies were measured using impact test method under free-boundary condition. The natural frequencies of finite element analysis for shell and solid element showed a good agreement with experimental results. But beam element did not show a good agreement with experimental results, because beam element could not consider the degradation of mechanical properties of non-intersection parts for composite lattice structure.

  • PDF

Design of lattice structure for controlling elastic modulus in metal additive manufacturing (금속 적층제조에서의 격자구조 설계변수에 따른 탄성계수 분석)

  • In Yong Moon;Yeonghwan Song
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.276-281
    • /
    • 2023
  • With the high design freedom of the additive manufacturing process, there is a growing interest in multi-dimensional lattice structures among researchers, who are studying intricate structural modeling that is challenging to produce using conventional manufacturing processes. In the case of titanium alloy implants for human insertion, a multi-dimensional lattice structure is employed to ensure compatibility with bones, adjusting strength and elastic modulus to levels similar to those of bones. Therefore, securing a database on the mechanical properties based on lattice structure design variables and the development of related simulation techniques are believed to efficiently facilitate the customization of implants. In this study, lattice structures were additively manufactured using Ti-6Al-4V alloy, and the elastic modulus was measured based on design parameters. The results were compared with simulations, and an approach to finite element analysis for accurate prediction of the elastic modulus was proposed.

Analysis of Spiral Lattice Girder Shape in preparation for HSR Speed Increase

  • Eum, Ki-Young;Lee, Jee-Ha;Park, Young-Kon;Yun, Jangho;Jeong, Seongwoon
    • International Journal of Railway
    • /
    • v.6 no.4
    • /
    • pp.160-168
    • /
    • 2013
  • A spiral lattice girder-reinforced Bi-block sleeper which has enhanced durability against increasingly growing impact force and vibration by wheel load and improved structural performance while train runs at 350km/h high speed is hereby proposed. The section of a spiral lattice girder has stable and superior structural performance thanks to its confinement effect. To compare and analyze the structural performance of spiral lattice girder-reinforced bi-block sleeper, strain and stress distribution were evaluated after applying same load condition as existing triangular lattice girder-reinforced biblock sleeper, and to compare the structural performance of triangular lattice girder and spiral lattice girder, structural analysis of lattice girder was performed separately. As a result, a spiral lattice girder proved to have had superior structural characteristics to bi-block sleeper, and furthermore as a result of evaluating the fastener interface and constructibility with shape-improved lattice girder, no interference with existing railroad structure was found and in terms of cost efficiency, a spiral lattice girder appeared to be superior to existing lattice girder.

Lattice Vector Quantization and the Lattice Sample-Adaptive Product Quantizers (격자 벡터 양자화와 격자 표본 적응 프로덕트 양자기)

  • Kim, Dong-Sik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.2
    • /
    • pp.18-27
    • /
    • 2012
  • Optimal quantizers in conducting the entropy-constrained quantization for high bit rates have the lattice structure. The quantization process is simple due to the regular structure and various quantization algorithms are proposed depending on the lattice. In this paper, such a lattice vector quantization is implemented by using the sample-adaptive product quantizer (SAPQ). It is shown that several important lattices can be implemented by SAPQ and the lattice vector quantization can be performed by using a simple integer-transform function of scalar values within SAPQ. The performance of the proposed lattice SAPQ is compared to the entropy-constrained scalar quantizer and the entropy-constrained SAPQ (ECSAPQ) at a similar encoding complexity. Even though ECSAPQ shows a good performance at low bit-rates, lattice SAPQ shows better performance than the ECSAPQ case for a wide range of bit rates.

LI-ideals in lattice implication algebras

  • Jun, Young-Bae;Roh, Eun-Hwan;Yang Xu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.13-24
    • /
    • 1998
  • We define an LI-ideal of a lattice implication algebra and show that every LI-ideal is a lattice ideal. We give an exampl that a lattice ideal may not be an LI-ideal, and show that every lattice ideal is an LI-ideal in a lattice H implication algebra. we discuss the relationship between filters and LI-ideals, and study how to generate an LI-ideal by a set. We construct the quotient structure by using an LI-ideal, and study the properties of LI-ideals related to implication homomorphisms.

  • PDF

The Effect of Glossiness and Lattice Structure of Wax Matrixes on Using n-Parrafin and Branched Wax (직쇄 파라핀 왁스와 분지 왁스 사용에 따른 오일-왁스 겔에 미치는 왁스구조와 광택에 미치는 영향 연구)

  • Choi, Khee-Hwan;Son, Hong-Ha;Lee, Sang-Min
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.36 no.2
    • /
    • pp.99-103
    • /
    • 2010
  • Waxes, or long-chain hydrocarbons, may be obtained naturally from animals, vegetables, and mineral waxes, or may be synthesized. The oil-wax gels are widely applied to lots of cosmetics such as lipsticks. For example, the lipstick texture is strongly dependent on the glossiness of the oil-wax gels. Extensive research has been carried out to investigate the lattice structure of wax mixture in pure solvents (hydrocarbons) and defined mixtures. However, only a limited amount of work has been published on the lattice structure of wax matrixes in undefined mixtures. The objective of this study was to investigate the relationship between the lattice structure of ceresin wax and different wax mixtures and the glossiness of oil-wax gels. Recently visual factors such as the glossiness of skin are generally known as the words to express the beauty. The mechanism of glossiness has been suggested to understand the changes that occur in the lattice structure of the wax matrixes when they are forming gels and also the effects of the nature of solvent. The present work investigates the lattice structure of the wax matrixes and glossiness of oil-wax gels obtained from ceresin and microcrystalline wax as well as of the gels formed by different waxes in solvent.

Buckling Load of Single-layered Lattice Roof Structure Considering Asymmetric Snow Load (비대칭 적설하중 적용을 통한 단층 래티스 지붕 구조물의 좌굴하중 특성)

  • Hwang, Kyung-Ju;Lee, Seung-Jae;Shon, Su-Deok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.3
    • /
    • pp.43-49
    • /
    • 2015
  • A single-layerd steel lattice roof, which has 50m span, was constructed. In order to figure out the realistic buckling load level, the structural analysis of this roof structure was performed especially by local snow load. Due to the characteristics of application of snow load, the load combinations of snow should be considered not only global area but also local part so that the critical buckling load could be observed as easy as possible. Geometrical imperfection was simulated to consider inaccurate shape of structure. And then nonlinear analysis were performed. Finally, this paper could investigate that the local snow load with geometrical imperfection decreased the level of buckling load significantly.