• Title/Summary/Keyword: Lattice defect

Search Result 100, Processing Time 0.024 seconds

Synthesis of Semiconducting $KTaO_3$ Thin films

  • Bae, Hyung-Jin;Ku, Jayl;Ahn, Tae-Won;Lee, Won-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1265-1268
    • /
    • 2005
  • In this study, the synthesis and semiconducting properties of cation and defect-doped $KTaO_3$ film is reported. $KTaO_3$ is an important material for optoelectronic and tunable microwave applications. It is an incipient ferroelectric with a cubic structure that becomes ferroelectric when doped with Nb. While numerous studies have investigated the thin-film growth of semiconducting perovskites, little is reported about semiconducting $KTaO_3$ thin films. In this work, the films were grown on (001) MgO single crystal substrates using pulsed-laser deposition. Semiconducting behavior is achieved by inducing oxygen vacancies in the $KTaO_3$ lattice via growth in a hydrogen atmosphere. The resistivity of semiconducting $KTaO_3:Ca$ films was as low as 10cm, and n-type semiconducting behavior was indicated. Hall mobility and carrier concentration were $0.27cm^2/Vs$ and $3.21018cm^{-3}$, respectively. Crystallinity and microstructure of the $KTaO_3:Ca$ films were examined using X-ray diffraction and field-emission scanning microscopy.

  • PDF

Kinetics and Mechanism of the Oxidation of Carbon Monoxide on $ZnCe_{1+y}O_2$ ($ZnCe_{1+y}O_2$상에서 일산화탄소의 산화반응 메카니즘)

  • Kim Keu Hong;Jae Shi Choi
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.2
    • /
    • pp.102-108
    • /
    • 1984
  • The catalytic oxidation of CO has been investigated on $ZnCe_{1+y}O_2$ at temperatures from 300 to $500^{\circ}C$ under various P_{CO} and PO_2 conditions. The oxidation rates have been correlated with 1.5-order kinetics: first order with respect to CO and 0.5 order with respect to O2. CO appears to be absorbed essentially on the O lattice of $ZnCe_{1+y}O_2$ as a molecular species, while $O_2$ adsorbs on an O vacancy as an ionic species. The conductivity data show that CO adsorption contributes electron to the conduction band and the adsorption process of $O_2$ withdraws it from an O vacancy. The oxidation mechanism and the defect model of $ZnCe_{1+y}O_2$ are inferred at given temperature and $PO_2'$s from the agreement between the conductivities and kinetic data. It is suggested that CO absorption is the rate-controlling.

  • PDF

Role of CaO in the Sintering of 12Ce-TZP Ceramics (12Ce-TZP 세라믹스의 소결에서의 CaO의 역할)

  • 박정현;문성환;박한수
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.4
    • /
    • pp.65-65
    • /
    • 1992
  • Role of CaO in the sintering of 12Ce-TZP ceramics was studied. The addition of small amounts of CaO increase the densification rate of 12Ce-TZP by altering lattice defect structure and the diffusion coefficient of the rate controlling species, namely cerium and zirconium cations. CaO also inhibits grain growth during sintering and allows the sintering process to proceed to theoretical density by maintaining a high diffusion flux of vacancies from the pores to the grain boundaries. The inhibition of grain growth is accomplished by the segregation of solute at the grain boundaries, causing a decrease in the grain boundary mobility. The segregation of calcium was revealed by AES study.

Correlation Between Energy Gap and Defect Formation of Al Doped Zinc Oxide on Carbon Doped Silicon Oxide

  • Oh, Teresa;Kim, Chy Hyung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.4
    • /
    • pp.207-212
    • /
    • 2014
  • Aluminum-doped zinc oxide (AZO) films were deposited on SiOC/Si wafer by an RF-magnetron sputtering system, by varying the deposition parameters of radio frequency power from 50 to 200 W. To assess the correlation of the optical properties between the substrate and AZO thin film, photoluminescence was measured, and the origin of deep level emission of AZO thin films grown on SiOC/Si wafer was studied. AZO formed on SiOC/Si substrates exhibited ultraviolet emission due to exciton recombination, and the visible emission was associated with intrinsic and extrinsic defects. For the AZO thin film deposited on SiOC at low RF-power, the deep level emission near the UV region is attributed to an increase of the variations of defects related to the AZO and SiOC layers. The applied RF-power influenced an energy gap of localized trap state produced from the defects, and the gap increased at low RF power due to the formation of new defects across the AZO layer caused by lattice mismatch of the AZO and SiOC films. The optical properties of AZO films on amorphous SiOC compared with those of AZO film on Si were considerably improved by reducing the roughness of the surface with low surface ionization energy, and by solving the problem of structural mismatch with the AZO film and Si wafer.

Morphology control and optical properties of ZnO nanostructures grown by ultrasonic synthesis

  • Morales-Flores, N.;Galeazzi, R.;Rosendo, E.;Diaz1d, T.;Velumani, S.;Pal, U.
    • Advances in nano research
    • /
    • v.1 no.1
    • /
    • pp.59-70
    • /
    • 2013
  • ZnO nanostructures of rod-like, faceted bar, cup-end bars, and spindle shaped morphologies could be grown by a low power ultrasonic synthesis process. pH of the reaction mixture seems to plays an important role for defining the final morphology of ZnO nanostructures. While the solution pH as low as 7 produces long, uniform rod-like nanostructures of mixed phase (ZnO and $Zn(OH)_2$), higher pH of the reaction mixture produces ZnO nanostructures of different morphologies in pure hexagonal wurtzite phase. pH of the reaction as high as 10 produces bar shaped uniform nanostructures with lower specific surface area and lower surface and lattice defects, reducing the defect emissions of ZnO in the visible region of their photoluminescence spectra.

Evolution of the Vortex Melting Line with Irradiation Induced Defects

  • Kwok, Wai-Kwong;L. M. Paulius;Christophe Marcenat;R. J. Olsson;G. Karapetrov
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.5-12
    • /
    • 2001
  • Our experimental research focuses on manipulating pinning deflects to alter the phase diagram of vortex matter, creating new vortex phases. Vortex matter offers a unique opportunity for creating and studying these novel phase transitions through precise control of thermal, pinning and elastic energies. The vortex melting transition in untwinned YB $a_2$C $u_3$ $O_{7-}$ $\delta$/ crystals is investigated in the presence of disorder induced by particle irradiation. We focus on the low disorder regime, where a glassy state and a lattice state can be realized in the same phase diagram. We follow the evolution of the first order vortex melting transition line into a continuous transition line as disorder is increased by irradiation. The transformation is marked by an upward shift in the lower critical point on the melting line. With columnar deflects induced by heavy ion irradiation, we find a second order Bose glass transition line separating the vortex liquid from a Bose glass below the lower critical point. Furthermore, we find an upper threshold of columnar defect concentration beyond which the lower critical point and the first order melting line disappear together. With point deflect clusters induced by proton irradiation, we find evidence for a continuous thermodynamic transition below the lower critical point..

  • PDF

A Study on the Fabrication $Na_0.5$$K_0.5$$NbO_3$ Volatile Material Thin Film by Pulsed Laser Deposition and he Confirmation of C-axis Orientation by X-ray Diffraction (PLD 기법에 의한 $Na_0.5$$K_0.5$$NbO_3$ 휘발성 물질의 박막 제작 및 XRD에 의한 c축 배향성 확인에 관한 연구)

  • 최원석;김장용;장철순;문병무
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.4
    • /
    • pp.269-273
    • /
    • 2001
  • W fabricated thin film using Na$_{0.5}$K$_{0.5}$NbO$_3$ volatile material by pulsed laser deposition (PLD) and studied characterization from EM, XRD, P-E. The density and scale of droplet, which is the defect of PLD, was investigated by SEM but large droplet was not found. The degree of assemble oriented C-axis measured with X-ray diffraction suggests that this film oriented C-axis achieved by $\theta$-2$\theta$ scan and rocking curves shows good self-assemble phenomenon, finally $\phi$-scan does that all of the four directions of the lattice in film equals to those of substrate. P-E hysteresis loop shows residual remnant polarization or saturation polarization value, but it is applicable to memories.ies.

  • PDF

Effect of Hg-ambient annealing on Hg0.7Cd0.3Te thin films for IR detector (Hg 분위기 열처리에 따른 적외선 감지용 Hg0.7Cd0.3Te 박막의구조적 특성 변화)

  • Kim, Kwang-Chon;Lee, Cha-Hyun;Choi, Won-Chel;Kim, Hyun-Jae;Kim, Jin-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.398-402
    • /
    • 2010
  • The liquid phase epitaxy(LPE) method was widely used to growth of mercury cadmium telluride(MCT) thin films. However, this method lead to Hg-vacancies in MCT thin film, because Hg has high vapor pressure at this temperature range. This is a well known defect in HgCdTe grown by LPE method. In this study, we report the development of techniques for improving the crystalline quality and controlling the composite uniformity of HgCdTe thin films using high- pressure Hg-ambient annealing method. As a result, we achieved the improvement of the composite uniformity of HgCdTe thin films. It was observed by the high angle annular dark field scanning TEM(HAADF-STEM) analysis. Moreover, new HgTe phase and a shrinking of lattice fringe were observed.

Growth and Photoconductive Characteristics of $ZnGa_2Se_4$ Epilayers by the Hot Wall Epitaxy

  • Park, Chang-Sun;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.263-266
    • /
    • 2004
  • The stochiometric mix of evaporating materials for the $ZnGa_2Se_4$ single crystal thin films were prepared from horizental furnace. The polycrystal structure obtaind from the power x-ray diffraction was defect chalcopyrite. The lattice costants $a_0\;and\;c_0\;were\;a_0=5.51\;A,\;c_0=10.98\;A$. To obtains the single crystal thin films, $ZnGa_2Se_4$ mixed crystal were deposited on throughly etched Si(100) by the Hot Wall Epitaxy (HWE) system. The temperates of the source and the substrate were $590^{\circ}C\;and\;450^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the double crystal X-ray diffraction(DCXD). Hall effect on this sample was measured by the method of van der Pauw and studied on carrier density and mobility dependence on temperature. In order to explore the applicability as a photoconductive cell, we measured the sensitivity($\gamma$), the ratio of photocurrent to dark current(pc/dc), maximum allowable rower dissipation(MAPD), spectral response and response time.

  • PDF

Effects of rapid thermal annealing and bias sputtering on the structure and properties of ZnO:Al films deposited by DC magnetron sputtering (Bias를 인가한 DC magnetron sputtering 법으로 증착된 ZnO:Al 박막의 구조적 특성과 RTP의 annealing에 따른 영향)

  • Park, Kyeong-Seok;Lee, Kyu-Seok;Lee, Sung-Wook;Park, Min-Woo;Kwak, Dong-Joo;Lim, Dong-Gun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.500-501
    • /
    • 2005
  • Aluminum doped zinc oxide films (ZnO:Al) were deposited on glass substrate by DC magnetron sputtering from a ZnO target mixed with 2 wt% $Al_2O_3$. The effects of substrate bias on the electrical properties and film structure were studied. Films deposited with positive bias have been annealed at $600^{\circ}C$ using rapid thermal anneal (RTA) process. The effects of RTA on the evolution of film microstructure are to be also studied using X-ray diffraction, transmission electron microscopy, and atomic force microscopy. Positive bias sputtering may induce lattice defects caused by electron bombardments during deposition. The as-deposited film microstructure evolves from the film with high defect density to more stable film condition. The electrical properties of the films after RTA process were also studied and the results were correlated with the evolution of film microstructures.

  • PDF