• Title/Summary/Keyword: Lattice constants

Search Result 183, Processing Time 0.026 seconds

Effects of Mn Substitution on Crystallographic and Magnetic Properties of Li-Zn-Cu Ferrites

  • Lee, Young Bae;Choi, Won-Ok;Chae, Kwang Pyo
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.210-214
    • /
    • 2014
  • The effects of manganese substitution on the crystallographic and magnetic properties of Li-Zn-Cu ferrite, $Li_{0.5}Zn_{0.2}Cu_{0.4}Mn_xFe_{2.1-x}O_4$ ($0.0{\leq}x{\leq}0.8$), were investigated. Ferrites were synthesized via a conventional ceramic method. We confirmed the formation of crystallized particles using X-ray diffraction, field emission scanning electron microscopy and $M{\ddot{o}}ssbauer$ spectroscopy. All of the samples showed a single phase with a spinel structure, and the lattice constants linearly decreased as the substituted manganese content increased, and the particle size of the samples also somewhat decreased as the doped manganese content increased. All the $M{\ddot{o}}ssbauer$ spectra can be fitted with two Zeeman sextets, which are the typical spinel ferrite spectra of $Fe^{3+}$ with A- and B-sites, and one doublet. The cation distribution was determined from the variation of the $M{\ddot{o}}ssbauer$ parameters and of the absorption area ratio. The magnetic behavior of the samples showed that an increase in manganese content led to a decrease in the saturation magnetization, whereas the coercivity was nearly constant throughout. The maximum saturation magnetization was 73.35 emu/g at x = 0.0 in $Li_{0.5}Zn_{0.2}Cu_{0.4}Mn_xFe_{2.1-x}O_4$.

Integration of Ba0.5Sr0.5TiO3Epitaxial Thin Films on Si Substrates and their Dielectric Properties (Si기판 위에 Ba0.5Sr0.5TiO3 산화물 에피 박막의 집적화 및 박막의 유전 특성에 관한 연구)

  • Kim, Eun-Mi;Moon, Jong-Ha;Lee, Won-Jae;Kim, Jin-Hyeok
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.6 s.289
    • /
    • pp.362-368
    • /
    • 2006
  • Epitaxial $Ba_{0.5}Sr_{0.5}TiO_3$ (BSTO) thin films have been grown on TiN buffered Si (001) substrates by Pulsed Laser Deposition (PLD) method and the effects of substrate temperature and oxygen partial pressure during the deposition on their dielectric properties and crystallinity were investigated. The crystal orientation, epitaxy nature, and microstructure of oxide thin films were investigated using X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). Thin films were prepared with laser fluence of $4.2\;J/cm^2\;and\;3\;J/cm^2$, repetition rate of 8 Hz and 10 Hz, substrate temperatures of $700^{\circ}C$ and ranging from $350^{\circ}C\;to\;700^{\circ}C$ for TiN and oxide respectively. BSTO thin-films were grown on TiN-buffered Si substrates at various oxygen partial pressure ranging from $1{\times}10^{-4}$ torr to $1{\times}10^{-5}$ torr. The TiN buffer layer and BSTO thin films were grown with cube-on-cube epitaxial orientation relationship of $[110](001)_{BSTO}{\parallel}[110](001)_{TiN}{\parallel}[110](001)_{Si}$. The crystallinity of BSTO thin films was improved with increasing substrate temperature. C-axis lattice parameters of BSTO thin films, calculated from XRD ${\theta}-2{\theta}$ scans, decreased from 0.408 m to 0.404 nm and the dielectric constants of BSTO epitaxial thin films increased from 440 to 938 with increasing processing oxygen partial pressure.

Growth and optical properties for $AgGaS_2$ epilayer by hot wall epitaxy (HWE 방법에 의한 $AgGaS_2$ 박막성장과 광학적특성)

  • Youn, Seuk-Jin;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.56-59
    • /
    • 2004
  • The stochiometric composition of $AgGaS_2$ polycrystal source materials for the $AgGaS_2/GaAs$ epilayer was prepared from horizontal furnace. From the extrapolation method of X-ray diffraction patterns it was found that the polycrystal $AgGaS_2$ has tetragonal structure of which lattice constant $a_0$ and $c_0$ were 5.756 ${\AA}$ and 10.305 ${\AA}$, respectively. $AgGaS_2/GaAs$ epilayer was deposited on throughly etched GaAs (100) substrate from mixed crystal $AgGaS_2$ by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $590^{\circ}C$ and $440^{\circ}C$ respectively. The crystallinity of the grown $AgGaS_2/GaAs$ epilayer was investigated by the DCRC (double crystal X-ray diffraction rocking curve). The optical energy gaps were found to be 2.61 eV for $AgGaS_2/GaAs$ epilayer at room temperature. The temperature dependence of the photocurrent peak energy is well explained by the Varshni equation, then the constants in the Varshni equation are given by ${\alpha}=8.695{\times}10^{-4}eV/K$, and $\beta$=332 K. From the photocurrent spectra by illumination of polarized light of the $AgGaS_2/GaAs$ epilayer, we have found that crystal field splitting $\Delta$ Cr was 0.28 eV at 20 K. From the PL spectra at 20 K, the peaks corresponding to free and bound excitons and a broad emission band due to D-A pairs are identified. The binding energy of the free excitons are determined to be 0.2676 eV and 0.2430 eV and the dissociation energy of the bound excitons to be 0.4695 eV.

  • PDF

First-principles Calculations of the Phonon Transport in Carbon Atomic Chains Based on Atomistic Green's Function Formalism

  • Kim, Hu Sung;Park, Min Kyu;Kim, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.425.1-425.1
    • /
    • 2014
  • Thermal transport in nanomaterials is not only scientifically interesting but also technological important for various future electronic, bio, and energy device applications. Among the various computation approaches to investigate lattice thermal transport phenomena in nanoscale, the atomistic nonequilibrium Green's function approach based on first-principles density functional theory calculations appeared as a promising method given the continued miniaturization of devices and the difficulty of developing classical force constants for novel nanoscale interfaces. Among the nanometerials, carbon atomic chains, namely the cumulene (all-doulble bonds, ${\cdots}C=C=C=C{\cdots}$) and polyyne (alternation of single and triple bonds, ${\cdots}C{\equiv}C-C{\equiv}C{\cdots}$) can be considered as the extream cases of interconnction materials for nanodevices. After the discovery and realization of carbon atomic chains, their electronic transport properties have been widely studied. For the thermal transport properties, however, there have been few literatures for this simple linear chain system. In this work, we first report on the development of a non-equilibrium Green's function theory-based computational tool for atomistic thermal transport calculations of nanojunctions. Using the developed tool, we investigated phonon dispersion and transmission properties of polyethylene (${\cdots}CH2-CH2-CH2-CH2{\cdots}$) and polyene (${\cdots}CH-CH-CH-CH{\cdots}$) structures as well as the cumulene and polyyne. The resulting phonon dispersion from polyethylene and polyene showed agreement with previous results. Compared to the cumulene, the gap was found near the ${\Gamma}$ point of the phonon dispersion of polyyne as the prediction of Peierls distortion, and this feature was reflected in the phonon transmission of polyyne. We also investigated the range of interatomic force interactions with increase in the size of the simulation system to check the convergence criteria. Compared to polyethylene and polyene, polyyne and cumulene showed spatially long-ranged force interactions. This is reflected on the differences in phonon transport caused by the delicate differences in electronic structure.

  • PDF

Study on Optical Properties and Phase Transition of $TlGa_xIn_{1-x}Se_2$ Solid Solutions ($TlGa_xIn_{1-x}Se_2$ Solid Solution의 광학적 특성 및 상전이에 관한 연구)

  • Yoon, Chang-Sun;Kim, Byong-Ho;Cha, Duk-Joon
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.2
    • /
    • pp.220-226
    • /
    • 1993
  • An investigation was made of the dependences of the lattice constants and the energy gap on the composition of $TlGa_xIn_{1-x}Se_2$ single cystals grown by Bridgman method. It was found that a discontinuity in $TlGa_xIn_{1-x}Se_2$ solid solutions occurred in the composition range 0.25$0.0{\leq}X{\leq}0.25$) to the monoclinic structure ($0.65{\leq}X{\leq}1.0$) was observed in this composition range. The temperature dependences of the energy gap and the dielectric constant in $TlGaSe_2$ single crystal have shown that the anomalies appeared at 107 K and 120 K corresponding to first-order and second-order phase transitions, respectively.

  • PDF

Mossbauer Studies of $Cu_{0.95}Ge_{0.95}Fe_{0.1}O_3$ (Mossbauer 분광법에 의한 $Cu_{0.95}Ge_{0.95}Fe_{0.1}O_3$의 연구)

  • 채광표;권우현;이영배
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.1
    • /
    • pp.16-21
    • /
    • 2000
  • Magnetic properties and crystallographic properties of $Cu_{0.95}Ge_{0.95}Fe_{0.1}O_3$ were studied by using x-ray diffraction, superconducting quantum interference device (SQUID) and Mossbauer spectroscopy. Our sample has orthorhombic structure and the lattice constants are a = 4.795 $\AA$, b = 8.472 $\AA$, c = 2.932 $\AA$. The spin-Peierls (SP) transition temperatures of our sample is 13 K. The Mossbauer spectra consisted with two Zeeman sextets and one doublet due to $Fe^{3+}$ions. The Zeeman sextets come from tetrahedral $Fe^{3+}$ions and the doublets come from octahedral $Fe^{3+}$ions. The jump up of magnetic hyperfine field of 2nd Zeeman sextet and the increasing of the values of quadrupole splitting and isomer shift of doublet below SP transition temperature could be interpreted related with the atomic displacements. The N el temperature is 715 K, the Debye temperature are 540 K for octahedral site and 380 K for tetrahedral site, respectively.

  • PDF

Effects of Doping with Al, Ga, and In on Structural and Optical Properties of ZnO Nanorods Grown by Hydrothermal Method

  • Kim, Soaram;Nam, Giwoong;Park, Hyunggil;Yoon, Hyunsik;Lee, Sang-Heon;Kim, Jong Su;Kim, Jin Soo;Kim, Do Yeob;Kim, Sung-O;Leem, Jae-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1205-1211
    • /
    • 2013
  • The structural and optical properties of the ZnO, Al-doped ZnO, Ga-doped ZnO, and In-doped ZnO nanorods were investigated using field-emission scanning electron microscopy, X-ray diffraction, photoluminescence (PL) and ultraviolet-visible spectroscopy. All the nanorods grew with good alignment on the ZnO seed layers and the ZnO nanorod dimensions could be controlled by the addition of the various dopants. For instance, the diameter of the nanorods decreased with increasing atomic number of the dopants. The ratio between the near-band-edge emission (NBE) and the deep-level emission (DLE) intensities ($I_{NBE}/I_{DLE}$) obtained by PL gradually decreased because the DLE intensity from the nanorods gradually increased with increase in the atomic number of the dopants. We found that the dopants affected the structural and optical properties of the ZnO nanorods including their dimensions, lattice constants, residual stresses, bond lengths, PL properties, transmittance values, optical band gaps, and Urbach energies.

A study on the preparation and characterization of $Zn_xSr_{1-x}S$ thin films ($Zn_xSr_{1-x}S$ 박막의 제작과 특성에 관한 연구)

  • 이상태
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.660-664
    • /
    • 2001
  • $Zn_xSr_{1-x}S$ thin films were prepared in the whole composition range by rf sputtering, using powder targets of a mixture of ZnS and SrS with the required mole fraction. The possibility of existence of $Zn_xSr_{1-x}S$ solid solutions was systematically investigated from the results of thin film growth, in terns of structural, optical characteristics and the chemical bonding of the constituent atoms. The XRD, XPS and optical results made it clear that the solid solutions with a single-phased zincblende structure and a single-phased rocksalt structure were formed at $0.86~0.93{\leq}x{\leq}1$ and $0{\leq}x{\leq}0.29$, respectively. The miscibility gap, including phase separation regions was found to exist in $0.3{\leq}x{\leq}0.86~0.91$, in which lattice constants, binding energy and absorption edges kept almost constant by the same values as those at border compositions. The experimental results on phase transition agreed well with the fraction of ionic character $f_{i}$ based on the Phillips'dielectric theory.

  • PDF

Structures and Electrochemical Properties of LiNi0.5-xCo2x}Mn0.5-xO2 as Cathode Materials for Lithium-ion Batteries

  • Choi, Hyun-Chul;Kim, Ho-Jin;Jeong, Yeon-Uk;Jeong, Soo-Hwan;Cheong, In-Woo;Jung, Uoo-Chang
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2603-2607
    • /
    • 2009
  • $LiNi_{0.5-x}Co_{2x}Mn_{0.5-x}O_{2}$ (x = 0, 0.1, 1/6, 1.2, 0.3) were synthesized by the solid-state reaction method. The crystal structure was analyzed by X-ray powder diffraction and Rietveld refinement. $LiNi_{0.5-x}Co_{2x}Mn_{0.5-x}O_{2}$ samples give single phases of hexagonal layered structures with a space group of R-3m for x = 0.1, 1/6, 0.2, and 0.3. The lattice constants of a and c-axis were decreased with the increase in Co contents in samples. The thickness of MO2 slab was decreased and inter-slab distance was increased with the increase in Co contents in $LiNi_{0.5-x}Co_{2x}Mn_{0.5-x}O_{2}$. According to XPS analysis, the valence states of Mn, Co, and Ni in the sample are mainly +4, +3, and +3, respectively. The discharge capacity of 202 mAh/g at 0.1C-rate in the potential range of 4.7 - 3.0 V was obtained in $LiNi_{0.3}Co_{0.4}Mn_{0.3}O_2$ sample, and $LiNi_{0.4}Co_{0.2}Mn_{0.4}O_2$ gives excellent cycle performance in the same potential range.

A Study of the Structure and Luminescence Properly of BaMgAl10O17:Eu2+ Blue Phosphor using Scattering Method (Scattering법을 이용한 BaMgAl10O17:Eu2+ 청색형광체의 구조와 발광특성 연구)

  • 김광복;김용일;구경완;천희곤;조동율
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.1
    • /
    • pp.67-74
    • /
    • 2002
  • A phosphor for Plasma Display Panel, BaMgAl$_{10}$ O$_{17}$ :Eu$^{2+}$, showing a blue emission band at about 450nm was prepared by a solid-state reaction using BaCO$_3$, $Al_2$O$_3$, MgO, Eu$_2$O$_3$ as starting materials wish flux AlF$_3$. The study of the behaviour of Eu in BAM phosphor was carried out by the photoluminescence spectra and the Rietveld method with X-ray and neutron powder diffraction data to refine the structural parameters such as lattice constants, the valence state of Eu, the preferential site of Mg atom and the site fraction of each atom. The phenomenon of the concentration quenching was abound 2.25~2.3wt% of Eu due to a decrease in the critical distance for energy transfer of inter-atomic Eu. Through the combined Rietveld refinement, R-factor, R$_{wp}$, was 8.11%, and the occupancy of Eu and Mg was 0.0882 and 0.526 at critical concentration. The critical distance of Eu$^{2+}$ in BAM was 18.8$\AA$ at 2.25% Eu of the concentration quenching. Furthermore, c/a ratio was decreased to 3.0wt% and no more change was observed over that concentration. The maximum entropy electron density was found that the modeling of $\beta$-alumina structure in BaMgAl$_{10}$ O$_{17}$ :Eu$^{2+}$correct coincided showing Ba, Eu, O atoms of z= 1/4 mirror plane.e.ane.e.