• 제목/요약/키워드: Lats2

검색결과 30건 처리시간 0.027초

The TGFβ→TAK1→LATS→YAP1 Pathway Regulates the Spatiotemporal Dynamics of YAP1

  • Min-Kyu Kim;Sang-Hyun Han;Tae-Geun Park;Soo-Hyun Song;Ja-Youl Lee;You-Soub Lee;Seo-Yeong Yoo;Xin-Zi Chi;Eung-Gook Kim;Ju-Won Jang;Dae Sik Lim;Andre J. van Wijnen;Jung-Won Lee;Suk-Chul Bae
    • Molecules and Cells
    • /
    • 제46권10호
    • /
    • pp.592-610
    • /
    • 2023
  • The Hippo kinase cascade functions as a central hub that relays input from the "outside world" of the cell and translates it into specific cellular responses by regulating the activity of Yes-associated protein 1 (YAP1). How Hippo translates input from the extracellular signals into specific intracellular responses remains unclear. Here, we show that transforming growth factor β (TGFβ)-activated TAK1 activates LATS1/2, which then phosphorylates YAP1. Phosphorylated YAP1 (p-YAP1) associates with RUNX3, but not with TEAD4, to form a TGFβ-stimulated restriction (R)-point-associated complex which activates target chromatin loci in the nucleus. Soon after, p-YAP1 is exported to the cytoplasm. Attenuation of TGFβ signaling results in re-localization of unphosphorylated YAP1 to the nucleus, where it forms a YAP1/TEAD4/SMAD3/AP1/p300 complex. The TGFβ-stimulated spatiotemporal dynamics of YAP1 are abrogated in many cancer cells. These results identify a new pathway that integrates TGFβ signals and the Hippo pathway (TGFβ→TAK1→LATS1/2→YAP1 cascade) with a novel dynamic nuclear role for p-YAP1.

상근피의 Hippo 신호전달 경로 활성화를 통한 YAP 억제 효능 (Root Bark of Morus Alba Suppresses the YAP Activity through Activation of Classical Hippo Signaling Pathway)

  • 조유나;최다빈;정한솔
    • 동의생리병리학회지
    • /
    • 제33권4호
    • /
    • pp.191-197
    • /
    • 2019
  • This study aims to evaluate the effects of the root bark of Morus alba (RMA) on the regulation of the Hippo-YAP pathway. Hippo-YAP signaling is a critical regulator in controlling organ size and tissue homeostasis. Hippo, the serine/threonine kinase phosphorylate the LATS. Phosphorylated LATS then phosphorylates and inactivates the YAP and TAZ, which are two closely related transcriptional co-activator. Here we report RMA activates the Hippo signaling, thereby inhibits the YAP/TAZ activity. First, we examine the cytotoxic effects of RMA by MTT assay. RMA was cytotoxic at concentrations higher than $50{\mu}g/ml$ in HEK293A cells. The reporter gene assay was performed to measure the activity of TEAD, a key transcription factor that controls cell growth and proliferation. RMA significantly suppressed the luciferase activity. By phos-taq gel shift assay, and western blotting, we showed that RMA enhanced the phosphorylation of YAP in wild type cells, but not in LATS1/2 knock out cells, which means RMA activates classical Hippo pathway. RMA induced the cytoplasmic sequestration of YAP. RMA also suppressed the mRNA expression of CTGF and CYR61; the two major YAP dependent genes. Taken together, RMA is considered to be a good candidate for proliferative disease such as cancer, by facilitating cell death through activating the Hippo signaling pathway.

DNA binding partners of YAP/TAZ

  • Kim, Min-Kyu;Jang, Ju-Won;Bae, Suk-Chul
    • BMB Reports
    • /
    • 제51권3호
    • /
    • pp.126-133
    • /
    • 2018
  • Hippo signaling plays critical roles in regulation of tissue homeostasis, organ size, and tumorigenesis by inhibiting YES-associated protein (YAP) and PDZ-binding protein TAZ through MST1/2 and LATS1/2 pathway. It is also engaged in cross-talk with various other signaling pathways, including WNT, BMPs, Notch, GPCRs, and Hedgehog to further modulate activities of YAP/TAZ. Because YAP and TAZ are transcriptional coactivators that lack DNA-binding activity, both proteins must interact with DNA-binding transcription factors to regulate target gene's expression. To activate target genes involved in cell proliferation, TEAD family members are major DNA-binding partners of YAP/TAZ. Accordingly, YAP/TAZ were originally classified as oncogenes. However, YAP might also play tumor-suppressing role. For example, YAP can bind to DNA-binding tumor suppressors including RUNXs and p73. Thus, YAP might act either as an oncogene or tumor suppressor depending on its binding partners. Here, we summarize roles of YAP depending on its DNA-binding partners and discuss context-dependent functions of YAP/TAZ.

Dishevelling Wnt and Hippo

  • Kim, Nam Hee;Lee, Yoonmi;Yook, Jong In
    • BMB Reports
    • /
    • 제51권9호
    • /
    • pp.425-426
    • /
    • 2018
  • As highly conserved signaling cascades of multicellular organisms, Wnt and Hippo pathways control a wide range of cellular activities, including cell adhesion, fate determination, cell cycle, motility, polarity, and metabolism. Dysregulation of those pathways are implicated in many human diseases, including cancer. Similarly to ${\beta}-catenin$ in the Wnt pathway, the YAP transcription co-activator is a major player in Hippo. Although the intracellular dynamics of YAP are well-known to largely depend on phosphorylation by LATS and AMPK kinases, the molecular effector of YAP cytosolic translocation remains unidentified. Recently, we reported that the Dishevelled (DVL), a key scaffolding protein between canonical and non-canonical Wnt pathway, is responsible for nuclear export of phosphorylated YAP. The DVL is also required for YAP intracellular trafficking induced by E-cadherin, ${\alpha}-catenin$, or metabolic stress. Note that the p53/LATS2 and LKB1/AMPK tumor suppressor axes, commonly inactivated in human cancer, govern the reciprocal inhibition between DVL and YAP. Conversely, loss of the tumor suppressor allows co-activation of YAP and Wnt independent of epithelial polarity or contact inhibition in human cancer. These observations provide novel mechanistic insight into (1) a tight molecular connection merging the Wnt and Hippo pathways, and (2) the importance of tumor suppressor contexts with respect to controlled proliferation and epithelial polarity regulated by cell adhesion.

Hippo-YAP/TAZ signaling in angiogenesis

  • Park, Jeong Ae;Kwon, Young-Guen
    • BMB Reports
    • /
    • 제51권3호
    • /
    • pp.157-162
    • /
    • 2018
  • Angiogenesis is a complex, multistep process involving dynamic changes in endothelial cell (EC) shapes and behaviors, especially in specialized cell types such as tip cells (with active filopodial extensions), stalk cells (with less motility) and phalanx cells (with stable junction connections). The Hippo-Yes-associated protein (YAP)/ transcription activator with PDZ binding motif (TAZ) signaling plays a critical role in development, regeneration and organ size by regulating cell-cell contact and actin cytoskeleton dynamics. Recently, with the finding that YAP is expressed in the front edge of the developing retinal vessels, Hippo-YAP/TAZ signaling has emerged as a new pathway for blood vessel development. Intriguingly, the LATS1/2-mediated angiomotin (AMOT) family and YAP/TAZ activities contribute to EC shapes and behaviors by spatiotemporally modulating actin cytoskeleton dynamics and EC junction stability. Herein, we summarize the recent understanding of the role of Hippo-YAP/TAZ signaling in the processes of EC sprouting and junction maturation in angiogenesis.

The Role of Hippo Pathway in Cancer Stem Cell Biology

  • Park, Jae Hyung;Shin, Ji Eun;Park, Hyun Woo
    • Molecules and Cells
    • /
    • 제41권2호
    • /
    • pp.83-92
    • /
    • 2018
  • The biological significance and deregulation of the Hippo pathway during organ growth and tumorigenesis have received a surge of interest in the past decade. The Hippo pathway core kinases, MST1/2 and LATS1/2, are tumor suppressors that inhibit the oncogenic nuclear function of YAP/TAZ and TEAD. In addition to earlier studies that highlight the role of Hippo pathway in organ size control, cell proliferation, and tumor development, recent evidence demonstrates its critical role in cancer stem cell biology, including EMT, drug resistance, and self-renewal. Here we provide a brief overview of the regulatory mechanisms of the Hippo pathway, its role in cancer stem cell biology, and promising therapeutic interventions.

The role of extracellular biophysical cues in modulating the Hippo-YAP pathway

  • Mo, Jung-Soon
    • BMB Reports
    • /
    • 제50권2호
    • /
    • pp.71-78
    • /
    • 2017
  • The Hippo signaling pathway plays an essential role in adult-tissue homeostasis and organ-size control. In Drosophila and vertebrates, it consists of a highly conserved kinase cascade, which involves MST and Lats that negatively regulate the activity of the downstream transcription coactivators, YAP and TAZ. By interacting with TEADs and other transcription factors, they mediate both proliferative and antiapoptotic gene expression and thus regulate tissue repair and regeneration. Dysregulation or mutation of the Hippo pathway is linked to tumorigenesis and cancer development. Recent studies have uncovered multiple upstream inputs, including cell density, mechanical stress, G-protein-coupled receptor (GPCR) signaling, and nutrients, that modulate Hippo pathway activity. This review focuses on the role of the Hippo pathway as effector of these biophysical cues and its potential implications in tissue homeostasis and cancer.

Laser Capture Microdissection을 이용한 유전자 발현 연구(II) : 원시난포와 1차난포 유전자 발현의 차이에 대한 분석 (Analysis of the Gene Expression by Laser Capture Microdissection(II) : Differential Gene Expression between Primordial and Primary Follicles)

  • 박창은;고정재;이숙환;차광렬;김격진;이경아
    • 한국발생생물학회지:발생과생식
    • /
    • 제6권2호
    • /
    • pp.89-96
    • /
    • 2002
  • 성장을 멈추고 있는 원시난포(primordial follicle)에서 난포발달이 개시되어 1차난포(primary follicle)로 발달하는 조절기전은 잘 알려져 있지 않다. 이 초기 난포발달 과정에 관여하는 유전자를 알아내기 위해 suppression subtractive hybridization(SSH)을 사용하였다. 생후 1일과 5일째의 생쥐 난소로부터 얻은 cDNA로 forward와 reverse subtraction을 수행하여 각각 day1과 day5-subtracted cDNA library를 얻었다. 이를 cloning한 결과, 357개 clone의 염기 서열을 BLAST와 RIKEN을 이용해 분석하여 27개의 clone은 novel gene으로 330개의 clone은 데이터 베이스와 일치함을 알았다. 이 중에 기능이 알려진 유전자는 day1에서는 42종, day5에서는 47종이 각각 차이 나게 발현하고 있는 것으로 나타났다. Day1-subtracted cDNA library에서는 GDF8, lats2, septin2, wee1등 4개 유전자를, day5-subtracted cDNA library에서는 HSP84, laminin2, MATER, MTi7, PTP 및 wrn등 6개 유전자를 선택하여 LCM-RT-PCR방법으로 실제로 원시난포와 1차난포에서 차이 나게 발현되고 있는 것을 확인하였다. 본 연구에서 얻은 유전자 발현 양상의 결과는 앞으로 생쥐뿐만 아니라 사람 난소에서 primordial-primary follicle transition에 관여하는 기전을 연구하는데 중요한 정보를 제공할 수 있을 것으로 사료된다.

  • PDF

보호지역 지정을 위한 갯벌의 평가기준 개발과 전남 지역갯벌의 평가 (Criteria and Evaluation of Local Tidal Flats for Designating Conservation Sites in the Southwestern Coast of Korea)

  • 장진호
    • 한국환경과학회지
    • /
    • 제17권12호
    • /
    • pp.1391-1402
    • /
    • 2008
  • Designating conservation sites is needed for the preservation and management of tidal flats, and also objective criteria, by which preservation values of tidal flats can be evaluated, are required to designate conservation sites. A set of new evaluation criteria or tidal flats was suggested in this study. The criteria, based on six items including scarcity, diversity, naturalness, uniqueness, destruction possibility and preservation will, ave the advantages with which easy and economic assessments are possible by using basic data from the preceding studies. The evaluation results for the three different tidal lats (Muan, Jeungdo-1 and Jeungdo-2) in the southwestern coast of Korea reveal that all he tidal flats evaluated are classified into grade 2. The tidal flat which got the highest valuation score was Jeungdo-1 tidal flat (86.7), and the next was Muan (85.0) and Jeungdo-2 (82.5). The Jeungdo-2 tidal flat was superior in uniqueness and destruction possibility, and the Muan tidal flat was superior in diversity and naturalness.