• Title/Summary/Keyword: Latitude

Search Result 1,043, Processing Time 0.024 seconds

Latitude-Independent Pc5 Geomagnetic Pulsations Associated With Field Line Resonance

  • Seon, Suk-Gyeong;Ki, Gwan-Hyeok;Le, Dong-Hun
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.04a
    • /
    • pp.40-40
    • /
    • 2004
  • The latitude-independent Pc5 pulsations with a spectral peak at -3 mHz were observed with IMAGE and SAMNET magnetometer away, ranging from -47$^{\circ}$ to -77$^{\circ}$geomagnetic latitudes, in the morning sector (0700-1000 local time) during an interval of 30 minutes on April 29, 2001. The spectral amplitude had a local peak at -67$^{\circ}$, where a sudden phase change of -180$^{\circ}$ is found. A vortical equivalent ionospheric current structure centered at latitude between 67$^{\circ}$ and 71$^{\circ}$ was observed during the Pc5 pulsations and the rotational sense of the current vortex was reversed for one cycle of the pulsation. (omitted)

  • PDF

GLOBAL MAPPING OF NEAR-EARTH MAGNETIC FIELDS MEASURED BY KITSAT-1 AND KITSAT-2 (KITSAT-1과 KITSAT-2에서 관측한 지구자기장의 분포)

  • 표유선;이동훈;민경욱
    • Journal of Astronomy and Space Sciences
    • /
    • v.11 no.1
    • /
    • pp.81-92
    • /
    • 1994
  • The magnetic field measurements from the KitSat-1 and KitSat-2 were tested by comparing with the IGRF model. The magnetic data have been collected by a three-axis fluxgate magnetometer on each satellite at an latitude of 1,325 km and 820 km, respectively. To avoid highly variable magnetic disturbances at the polar region, the field map has been within the limits of 50 degrees in latitude. Each data is averaged over the square of $5{\times}5$ degrees in both latitude and longitude. In these results, the relatively quiet periods were selected and the sampling rate was 30 seconds. It is shown that the results from these measurements are consistent with the IGRF map over the global surface map.

  • PDF

Kisat-A Magnetometer Observations of Birkeland Currents in the High-Latitude Region

  • Pyo, Yoo-Surn;Min, Kyoung-Wook
    • Bulletin of the Korean Space Science Society
    • /
    • 1993.10a
    • /
    • pp.8-8
    • /
    • 1993
  • Field-aligned(Birkeland) currents of the High-latitude polar region are to the linkage between the solar wind-magnetosphere system and the ionosphere. The characteristics of field-aligned currents at an attitude of 1300 km have been investigated from the KiSat-A satellite magnetometer data recorded at SatRec form March to May 1993. It is found that the po1arity of both east-west and south-north magnetic components becomes reversed and distorted across the poleward edge. We suggest that these changes May occur rule to the Region 1 and Region 2 currents. It is also suggested that the current time resolution which is about 30 seconds, should be improved to prove gradual polarity changes in the polar region. In addition, it is shown how the observational results depend on the longitude in the high-latitude region.

  • PDF

Clinical Evaluation of Wide-latitude HR-C Film for Chest Radiography (흉부촬영용 HR-C 필름의 임상평가)

  • Kim, Young-Sung;Hwang, Nam-Sun;Yeo, Young-Bok;Lee, In-Ja;Huh, Joon
    • Journal of radiological science and technology
    • /
    • v.13 no.1
    • /
    • pp.19-24
    • /
    • 1990
  • In appilcation of wide latitude HR-C film to chest x-ray examination, former x-ray diagnosis area is larger and diagnostic information has great deal of promotion. HR-C film is compare to former x-ray film is larger latitude and density level is small, reading is very easily. Especially, high estimate that is in characteristic curve linearity of toe part is good, contrast of low density made good shape and not good describe to overlap is diagnostic information increase mediastinum portion etc.

  • PDF

GPS Surveying by A Point Positioning (일점측위에 의한 GPS측정)

  • Lee, Y.H.;Mun, D.Y.
    • Journal of Korean Port Research
    • /
    • v.12 no.1
    • /
    • pp.119-130
    • /
    • 1998
  • As a satellite positioning system, GPS is designed to provide the information on three dimensional position, velocity, and time all over the world. The purpose of this paper is to obtain what day has the best accuracy and what time has the best accuracy of measuring of forteen-twenty mimutes for effective using of MAGELLAN G.P.S NAV DLX-10 system. The result of measurement maximum deviation value from November, 1997 to March, 1998 that latitude deviation is 3' .75 and longitude deviation is 2' .1 And the result of measurement maximum deviation value during fourteen minutes of April 29, 1998 that latitude deviation is 3' .75 and longitude deviation is 1' .9. The result of measurement maximum deviation value during twenty minutes of May 6, 1998 that latitude deviation is 4' .75 and longitude deviation is 2' .1 and that is provid 3' .25, 4' .1 to May 13, 1998. So, we expect efficient use of horizontal position for navigation.

  • PDF

Estimations and Long-term Trend of Sea-to-air Dimethyl Sulfide (DMS) Flux using Satellite Observation Data (인공위성 관측 자료를 이용한 해양-대기 DMS flux 추정 및 장기 추세 분석)

  • Choi, Yu-Na;Song, Sang-Keun;Han, Seung-Beom;Son, Young-Baek;Park, Yeon-Hee
    • Ocean and Polar Research
    • /
    • v.39 no.3
    • /
    • pp.181-194
    • /
    • 2017
  • The long-term linear trend of global sea-to-air dimethyl sulfide (DMS) flux was analyzed over a 16-year time span (2000~2015), based on satellite observation data. The emission rates of DMS (i.e. DMS flux) in the global ocean were estimated from sea surface DMS concentrations, which were constructed with chlorophyll a (Chl-a) concentrations and mixed layer depths (MLD), and transfer velocity from sea to air, which was parameterized with sea surface wind (SSW) and sea surface temperature (SST). In general, the DMS flux in the global ocean exhibited a gradual decreasing pattern from 2000 (a total of 12.1 Tg/yr) to 2015 (10.7 Tg/yr). For the latitude band ($10^{\circ}$ interval between $0^{\circ}$ and $60^{\circ}$), the DMS flux at the low latitude of the Northern (NH) and Southern hemisphere (SH) was significantly higher than that at the middle latitude. The seasonal mean DMS flux was highest in winter followed by in summer in both hemispheres. From the long-term analysis with the Mann-Kendall (MK) statistical test, a clear downward trend of DMS flux was predicted to be broad over the global ocean during the study period (NH: $-0.001{\sim}-0.036{\mu}mol/m^2/day\;per\;year$, SH: $-0.011{\sim}-0.051{\mu}mol/m^2/day\;per\;year$). These trend values were statistically significant (p < 0.05) for most of the latitude bands. The magnitude of the downward trend of DMS flux at the low latitude in the NH was somewhat higher than that at the middle latitude during most seasons, and vice versa for the SH. The spatio-temporal characteristics of DMS flux and its long-term trend were likely to be primarily affected not only by the SSW (high positive correlation of r = 0.687) but also in part by the SST (r = 0.685).

Potential Meso-scale Coupling of Benthic-Pelagic Production in the Northeast Equatorial Pacific (북동 적도 태평양에서 수층 기초 생산력과 심해저 퇴적물내 미생물 생산력과의 상관성)

  • Kim, Kyeong-Hong;Son, Ju-Won;Son, Seung-Kyu;Chi, Sang-Bum;Hyun, Jung-Ho
    • Ocean and Polar Research
    • /
    • v.33 no.1
    • /
    • pp.21-34
    • /
    • 2011
  • We determined potential meso-scale benthic-pelagic ecosystem coupling in the north equatorial Pacific by comparing surface chl-a concentration with sediment bacterial abundance and adenosine triphosphate (ATP) concentration (indication of active biomass). Water and sediment samples were latitudinally collected between 5 and $11^{\circ}N$ along $131.5^{\circ}W$. Physical water properties of this area are characterized with three major currents: North Equatorial Current (NEC), North Equatorial Count Current (NECC), and South Equatorial Current (SEC). The divergence and convergence of the surface water occur at the boundaries where these currents anti-flow. This low latitude area ($5{\sim}7^{\circ}N$) appears to show high pelagic productivity (mean phytoplankton biomass=$1266.0\;mgC\;m^{-2}$) due to the supplement of high nutrients from nutrient-enriched deep-water via vertical mixing. But the high latitude area ($9{\sim}11^{\circ}N$) with the strong stratification exhibits low surface productivity (mean phytoplankton biomass=$603.1\;mgC\;m^{-2}$). Bacterial cell number (BCN) and ATP appeared to be the highest at the superficial layer and reduced with depth of sediment. Latitudinally, sediment BCN from low latitude ($5{\sim}7^{\circ}N$) was $9.8{\times}10^8\;cells\;cm^{-2}$, which appeared to be 3-times higher than that from high latitude ($9{\sim}11^{\circ}N$; $2.9{\times}10^8\;cells\;cm^{-2}$). Furthermore, sedimentary ATP at the low latitude ($56.2\;ng\;cm^{-2}$) appeared to be much higher than that of the high latitude ($3.3\;ng\;cm^{-2}$). According to regression analysis of these data, more than 85% of the spatial variation of benthic microbial biomass was significantly explained by the phytoplankton biomass in surface water. Therefore, the results of this study suggest that benthic productivity in this area is strongly coupled with pelagic productivity.

IONOSPHERE-THERMOSPHERE INTERACTIONS BASED ON NCAR-TIEGCM: THE INFLUENCE OF THE INTERPLANETARY MAGNETIC FIELD (IMF)-DEPENDENT IONOSPHERIC CONVECTION ON THE HIGH-LATITUDE LOWER THERMOSPHERIC WIND (NCAR-TIEGCM을 이용한 이온권-열권의 상호작용 연구: 행성간 자기장(IMF)에 의존적인 이온권 플라즈마대류의 고위도 하부 열권 바람에 대한 영향)

  • 곽영실;안병호;원영인
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.1
    • /
    • pp.11-28
    • /
    • 2004
  • To better understand how high-latitude electric fields influence thermospheric dynamics, winds in the high-latitude lower thermosphere are studied by using the Thermosphere-ionosphere Electrodynamics General Circulation Model developed by the National Conte. for Atmospheric Research (NCAR-TIEGCM). The model is run for the conditions of 1992-1993 southern summer. The association of the model results with the interplanetary magnetic field(IMF) is also examined to determine the influences of the IMF-dependent ionospheric convection on the winds. The wind patterns show good agreement with the WINDII observations, although the model wind speeds are generally weaker than the observations. It is confirmed that the influences of high-latitude ionospheric convection on summertime thermospheric winds are seen down to 105 km. The difference wind, the difference between the winds for IMF$\neq$O and IMF=0, during negative IMF $B_y$ shows a strong anticyclonic vortex while during positive IMF $B_y$ a strong cyclonic vortex down to 105 km. For positive IMF $B_z$ the difference winds are largely confined to the polar cap, while for negative IMF B, they extend down to subauroral latitudes. The IMF $B_z$ -dependent diurnal wind component is strongly correlated with the corresponding component of ionospheric convection velocity down to 108 km and is largely rotational. The influence of IMF by on the lower thermospheric summertime zonal-mean zonal wind is substantial at high latitudes, with maximum wind speeds being $60\;ms^-1$ at 130 km around $77^{\circ}$ magnetic latitude.

Surface pH Of The Northeastern Pacific Ocean

  • Park, Kilho
    • 한국해양학회지
    • /
    • v.1 no.1_2
    • /
    • pp.1-6
    • /
    • 1966
  • A latitudinal, differential pH distribution is observed in the Northeastern Pacific Ocean with a pH range of 8.15 at high latitude (42 N) to 8.29 at low latitude (23 N). These pH values are generally greater than the calculated equilibrium pH with respect to atmospheric carbon dioxide. If we assume that the calculated equilibrium pH values ae valid, then the surface waters are undersaturated with respect to the atmospheric carbon dioxide during April to June 1966. A high surface pH value of about 8.26 was observed immediately south of the SubarcticBoundary zone near 170 W. This value differs from the equilibration pH by as much as 0.1 unit.

  • PDF

Steep plasma density gradient at middle latitudes observed by DMSP and TOPEX during the magnetic storm of 11-12 April 2001

  • Park, Sa-Rah;Kim, Khan-Hyuk;Kil, Hyo-Sub;Jee, Geon-Hwa;Lee, Dong-Hun;Goldstein, J.
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.26.3-27
    • /
    • 2011
  • Formation of a steep plasma density gradient in the middle-latitude ionosphere during geomagnetic storms and the latitudinal migration of its location depending on the storm phase are suggested to be associated with the ionospheric signature of the plasmapause. We test this idea by using the satellite and ground observation data during the 11 April 2001 storm. The locations of the steep plasma density gradient identified by TOPEX/Poseidon (2001 LT) and DMSP (1800 and 2130 LT) satellites coincide with the ionospheric footprints of the plasmapause identified by the IMAGE satellite. This observation may support the dependence of the middle-latitude plasma density gradient location on the plasmapause motion, but does not explain why the steep density gradient whose morphology is largely different from the morphology of the middle-latitude ionization trough during quiet period is formed in association with the plasmapause. The ionospheric disturbances in the total electron content (TEC) maps shows that the steep TEC gradient is formed at the boundary of the positive ionospheric storm in low-middle latitudes and the negative ionospheric storm in middle-high latitudes. We interpret that the thermospheric neutral composition disturbance in the dayside is confined within the middle-high latitude ionospheric convection zone. The neutral composition latitudes and, therefore, the locations of the steep plasma density gradient coincide with the footprints of the plasmapause. The TEC maps show that the appearance of the steep plasma density gradient in the pre-midnight sector during the recovery phase is related to the co-rotation of the gradient that is created during the main phase.

  • PDF