Browse > Article
http://dx.doi.org/10.4217/OPR.2011.33.1.021

Potential Meso-scale Coupling of Benthic-Pelagic Production in the Northeast Equatorial Pacific  

Kim, Kyeong-Hong (Deep-sea & Marine Georesources Research Department, KORDI)
Son, Ju-Won (Deep-sea & Marine Georesources Research Department, KORDI)
Son, Seung-Kyu (Deep-sea & Marine Georesources Research Department, KORDI)
Chi, Sang-Bum (Deep-sea & Marine Georesources Research Department, KORDI)
Hyun, Jung-Ho (Department of Environmental Marine Sciences, College of Science and Technology Hanyang University)
Publication Information
Ocean and Polar Research / v.33, no.1, 2011 , pp. 21-34 More about this Journal
Abstract
We determined potential meso-scale benthic-pelagic ecosystem coupling in the north equatorial Pacific by comparing surface chl-a concentration with sediment bacterial abundance and adenosine triphosphate (ATP) concentration (indication of active biomass). Water and sediment samples were latitudinally collected between 5 and $11^{\circ}N$ along $131.5^{\circ}W$. Physical water properties of this area are characterized with three major currents: North Equatorial Current (NEC), North Equatorial Count Current (NECC), and South Equatorial Current (SEC). The divergence and convergence of the surface water occur at the boundaries where these currents anti-flow. This low latitude area ($5{\sim}7^{\circ}N$) appears to show high pelagic productivity (mean phytoplankton biomass=$1266.0\;mgC\;m^{-2}$) due to the supplement of high nutrients from nutrient-enriched deep-water via vertical mixing. But the high latitude area ($9{\sim}11^{\circ}N$) with the strong stratification exhibits low surface productivity (mean phytoplankton biomass=$603.1\;mgC\;m^{-2}$). Bacterial cell number (BCN) and ATP appeared to be the highest at the superficial layer and reduced with depth of sediment. Latitudinally, sediment BCN from low latitude ($5{\sim}7^{\circ}N$) was $9.8{\times}10^8\;cells\;cm^{-2}$, which appeared to be 3-times higher than that from high latitude ($9{\sim}11^{\circ}N$; $2.9{\times}10^8\;cells\;cm^{-2}$). Furthermore, sedimentary ATP at the low latitude ($56.2\;ng\;cm^{-2}$) appeared to be much higher than that of the high latitude ($3.3\;ng\;cm^{-2}$). According to regression analysis of these data, more than 85% of the spatial variation of benthic microbial biomass was significantly explained by the phytoplankton biomass in surface water. Therefore, the results of this study suggest that benthic productivity in this area is strongly coupled with pelagic productivity.
Keywords
bacterial cell number; ATP; water column structure; microbial biomass; Pacific Ocean;
Citations & Related Records
Times Cited By KSCI : 12  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Ferguson RL, Murdoch MB (1975) Microbial ATP and organic carbon in sediments of the Newport River estuary. North Calolina. Estuar Res 1:229-250
2 Amann RI, Ludwig W, Schleifer KH (1995) Phytogenetic identification and in situ detection of individual microbial cells without cultivation. Microbial Rev 59:143-169
3 Baldi F, Marchetto D, Pini F, Fani R, Michaud L, GiudiceAL, Berto D, Giani M (2010) Biochemical and microbial features of shallow marine sediments along the Terra Nova Bay (Ross Sea, Antarctica). Cont Shelf Res 30:1614-1625   DOI   ScienceOn
4 Berelson WM (2002) Particle settling rates increase with depth in the ocean. Deep-sea Res II 49:237-251
5 Berger WH, Smetacek VS, Wefer G (1989) Ocean productivity and paleoproductivity-An Overview. In: Berger WH, Smetacek VS, Wefer G (eds) Productivity of the ocean: present and past. John Wiley & Sons, New York, pp 1-34
6 Bird DF, Juniper SK, Ricciardi-Rigault M, Nartineu P, Prairie YT, Calvert SE (2001) Subsurface viruses and bacteria in Holocene/Late Pleistocene sediments of Saanich Inlet, BC: ODP Holes 1033B and 1034B, Leg 169S. Mar Geol 174:227-239   DOI   ScienceOn
7 Boetius A, Lochte K (2000) Regional variation of total microbial biomass in sediments of the deep Arabian Sea. Deep-sea Res II 47:149-168   DOI   ScienceOn
8 Caron DA, Dam HG, Kremer P, Lessad EJ, Madin LP,Malone TC, Napp JM, Pele ER, Roman MR, Youngbluth MJ (1995) The contribution of microorganisms to particulate carbon and nitrogen in surface waters of the Sargasso Sea near Bermuda. Deep-Sea Res II 42:943-972   DOI   ScienceOn
9 Choi JW (1996) Macrozoobenthic community in the deep sea soft-bottom of the KODOS 96-1 area, northeastern Pacific Ocean. J Korean Soc Oceanogr 1:73-79   과학기술학회마을
10 Christian RR, Bancroft K, Wiebe WJ (1975) Distribution of microbial adenosine triphosphate in salt marsh sediments at Sapelo Island, Georgia. Soil Sci 119:89-97   DOI
11 김경홍, 손승규, 손주원, 주세종 (2006) 해양퇴적물내 총탄소 및 유기탄소의 분석기법 고찰. 한국해양공학회지 9:235-242
12 김동성, 현정호, 최진우, 이경용 (2000) 북동태평양 심해 퇴적물에 서식하는 중형 저서 생물군집의 위도별 특징. 한국해양학회지 바다 5:245-254   과학기술학회마을
13 김동성, 민원기, 이경용, 김기현 (2004) 북동 태평양 심해저 C-C 해역에 서식하는 중형저서동물 군집. Ocean and Polar Res 26:265-272   DOI   ScienceOn
14 김형직, 김동선, 형기성, 김경홍, 손주원, 황상철, 지상범, 김기현, 김부근 (2008) 북동태평양 심해에서 관측된 퇴적물 입자 플럭스의 계절적 변동. 한국해양학회지 바다 13:200-209   과학기술학회마을
15 민원기, 김동성, 김웅서 (2004) 북동태평양 심해저에 서식하는 중형저서동물 군집의 위도별 분포특성. Ocean and Polar Res 26:255-263   DOI   ScienceOn
16 박흥식, 지상범, 백상규, 김웅서 (2004) 북동 태평양 심해저 C-C 해역의 퇴적환경과 대형저서생물 분포와의 관계. Ocean and Polar Res 26:311-321   DOI   ScienceOn
17 손승규, 현정호, 박정기, 지상범, 김기현 (2001) 북동적도태평양 표층 수온변화에 따른 화학적 환경특성. 한국환경공학회지 4:24-37
18 지상범, 강정극, 오재경, 손승규, 박정기 (2003) 북동태평양 한국 심해저 연구지역 망간단괴의 지역적 분포와 퇴적환경. Ocean and Polar Res 25:257-267   과학기술학회마을   DOI   ScienceOn
19 최진우, 김동성, 현정호, 이창훈 (2004) 북동태평양 심해저 퇴적물에 서식하는 대형저서동물의 군집. Ocean and Polar Res 26:367-376   과학기술학회마을   DOI   ScienceOn
20 현정호, 김경홍, 지상범, 문재운 (1998) 북동적도 태평양 KODOD 97-2 해역 심해저 퇴적물내의 ATP 분포. 한국해양학회지 바다 3:142-148
21 현정호, 김경홍, 권개경, 이정현, 이홍금, 김상진, 김기현 (2002) 아데노신 3인산(ATP; Adenosine-5' triphosphate)을 이용한 심해저 및 연안퇴적토의 총 미생물 생체량 측정. 미생물학회지 38:119-126   과학기술학회마을
22 Azam F, Hodson RE (1977) Dissolved ATP in the sea and its utilization by marine bacteria. Nature 267:696-698   DOI   ScienceOn
23 Rowe G, Sibuet M, Deming J, Khripounoff A, Tietjen J, Macko S, Theroux R (1991) ‘Total’ sediment biomass and preliminary estimates of organic carbon residence time in deep-sea benthos. Mar Ecol Prog Ser 79:99-114   DOI
24 Turley CM, Dixon JL (2002) Bacterial numbers and growth in surfacial deep-sea sediments and phytodetritus in NE Atlantic: relationships with particulate organic carbon and total nitrogen. Deep-Sea Res I 49:815-826   DOI   ScienceOn
25 Vanucci S, Dell'Anno A, Pusceddu A, Fabiano M, Lampitt RS, Danovaro R (2001) Microbial assemblages associated with sinking particles in the Porcupine Abyssal Plain (NE Atlantic Ocean). Prog Oceanogr 50:105-121   DOI   ScienceOn
26 Verardo DJ, Froelich PN, McIntyre A (1990) Determination of organic carbon and nitrogen in marine sediments using the Carlo Erba Na-1500 Analzer. Deep-Sea Res II 37:157-165   DOI   ScienceOn
27 Yang EJ, Choi JK, Hyun JH (2004) Distribution and structure of heterotrophic protest communities in the northeast equatorial Pacific Ocean. Mar Biol 146:1-15   DOI
28 Yang YL, Elderfield H, Ivanovich M (1990) Glacial to Holocene changes in caronate and clay sedimentation in the equatorial Pacific ocean estimated from thorium-230 profiles. Paleoceanography 5:789-809   DOI
29 Schriever G, Ahnert A, Bluhm H, Borowski C, Thiel H(1997) Results of the large scale deep-sea environmental impact study DISCOL during eight years of investigation. In: Proceedings of the 7th International Offshore and Polar Engineering Conference, Honolulu, USA, 25-30 May 1997, pp 438-444
30 Smith CR, Hoover DJ, Doan SE, Pope RH, DeMaster DJ, Dobbs FC, Altabet MA (1996) Phytodetritus at the abyssal sea floor across $10^{\circ}$ of latitude in central equatorial Pacific. Deep-sea Res II 43:1309-1338   DOI   ScienceOn
31 Smith CR, Berelson W, DeMaster DJ, Dobbs FC, HammondD, Hoover DJ, Pope RH, Stephens M (1997) Latitudinal variations in benthic processes in the abyssal equatorial Pacific: control by biogenic particle flux. Deep-sea Res II 44:2295-2317   DOI   ScienceOn
32 Smith KL Jr, Kaufmann RS, Balawin RJ, Carlucci AF (2001) Pelagic benthic coupling in the abyssal eastern North Pacific: an 8-year time-series study of food supply and demand. Limnol Oceanogr 46:543-556   DOI
33 Suess E (1980) Particulate of organic carbon flux in the ocean: surface productivity and oxygen utilization. Nature 288:260-263   DOI
34 Tietjen JH (1992) Abundance and biomass of metazoan meiobenthos in the deep sea. In: Rowe GT, Pariente V (eds) Deep-sea food chains and global carbon cycles, Kluwer Academic Publishers Co, pp 45-62
35 Trueblood DD, Ozturgut E (1997) The benthic impact experiment: a study of the ecological impacts of deep seabed mining on abyssal benthic communities. In: Proceedings of the 7th International Offshore and Polar Engineering Conference, Honolulu, USA, 25-30 May, pp 481-487
36 Muller PJ, Hartmann M, Suess E (1988) Environment of manganese nodule. In: Halbach P, Friedrich G, von Stackelberg U (eds) The manganese nodule belt of the Pacific Ocean, Ferdinand Enke Verlag, Stuttgart, pp 70-141
37 Musat N, Werner U, Knittel K, Kolb S, Dodenhof T, vanBeusekom JEE, de Beer D, Dubilier N, Amann R(2006) Microbial community structure of sandy intertidal sediments in the North Sea, Sylt-Romo Basin, Wadden Sea. Syst Appl Microbiol 29:333-348   DOI   ScienceOn
38 Poremba K (1994) Simulated degradation of phytodetritus in deepsea sediments of the NE Atlantic. Mar Ecol Prog Ser 105:291-299   DOI
39 Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, 173 p
40 Piper DZ, Rude PD, Monteith S (1987) The chemistry and mineralogy of holed burrows in pelagic sediment at DOMES site A: the equatorial north Pacific. Mar Geol 74:41-55   DOI   ScienceOn
41 Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943-948   DOI
42 Queric NV, Soltwedel T, Arntz WE (2004) Application of a rapid direct viable count method to deep-sea sediment bacteria. J Microbiol Meth 57:351-367   DOI   ScienceOn
43 Raghukumar C, Laka Bharathi PA, Ansari ZA, Shanta Nair,Ingole B, Sheelu G, Mohandass C, Nagender Nath B,Nimi Rodrigues (2001) Bacterial standing stock, meiofauna and sediment-nutrient characteristics: indicators of benthic disturbance in the central Indian Basin. Deep-sea Res II 48:3381-3399   DOI   ScienceOn
44 Raghukumar C, Nagender Nath B, Sharma R, Bharathi PAL,Dalal SG (2006) Long-term changes in microbial and biochemical parameters in the Central Indian Basin. Deep-sea Res I 53:1695-1717   DOI   ScienceOn
45 Rijken M (1979) Food and food uptake in Arenicola marina. Neth J Sea Res 13:406-421   DOI   ScienceOn
46 Karl DM (1993) Total microbial biomass estimation derived from the measurement of particulate adenosine-5'- triphosphate. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds) Handbook of methods in aquatic microbial ecology, Lewis Publishers, pp 359-368
47 Kim KH (2009) Biogeochemical and microbiological response associated with the global climatic disturbance in the northeast equatorial Pacific. Ph.D. Thesis, Inha University, 158 p
48 Karl DM (1995) Ecology of free-living, hydrothermal vent microbial communities. In: Karl DM (ed) The microbiology of deep-sea hydrothermal vents, CRC Press, pp 36-110
49 Kessler WS (2006) The circulation of the eastern tropical Pacific : a review. Prog Oceanogr 69:181-217   DOI   ScienceOn
50 Kim HJ, Hyeong KS, Yoo CM, Chi SB, Khim BK, Kim DS (2010) Seasonal variations of particle fluxes in the northeastern equatorial Pacific during normal and weak El Nino periods. Geosci J 14(4):415-422   DOI   ScienceOn
51 Kim KH, Hyun JH, Son SK, Son JW (2008) Distribution patterns of carbon and nitrogen contents in the sediments of the northeast equatorial Pacific Ocean. J Korean Soc Oceanogr 13:210-221   과학기술학회마을
52 Koster M, Meyer-Reil LA (2001) Characterization of carbon and microbial biomass pools in shallow water coastal sediments of the southern Baltic Sea (Nordrügensche Bodden). Mar Ecol Prog Ser 214:25-41   DOI
53 Manini E, Fiordelmondo C, Gambi C, Pusceddu A, Danovaro R (2003) Benthic microbial loop functioning in coastal lagoons: a comparative approach. Oceanol Acta 26:27-38   DOI   ScienceOn
54 Ministry of Maritime Affairs and Fisheries (1998) A report on '98 Deep Sea Bed Mineral Resources Exploration. MOMAF, 1209 p
55 Montagona PA (1984) In situ measurement of meiobenthic grazing rates on sediment bacteria and edaphic diatoms. Mar Ecol Prog Ser 18:119-130   DOI
56 Hyun JH, Yang EJ (2005) Meso-scale spatial variation in bacterial abundance and production associated with surface convergence and divergence in the NE equatorial Pacific. Aquat Microbiol Ecol 41:1-13   DOI   ScienceOn
57 Horn DR, Horn BM, Delach MN (1973) Copper and Nikel content of ocean ferromanganese deposits and their relation to properties of the substrate. In: Morgenstein M (ed) The origin and distribution of manganese nodules in the pacific and prospects for exploration, Hawaii Inst. Geophysics, Honolulu, pp 77-83
58 Hulett HR (1970) Non-enzymatic hydrolysis of adenosine phosphates. Nature 225:1248-1249   DOI   ScienceOn
59 Hyun JH, Choi JK, Yang EJ, Kim KH (1998) Biomass and productivity of bacterioplankton related to surface water divergence in the northeast equatorial Pacific Ocean. J Microbiol 36(3):151-158
60 Kaneko T, Ogawa K, Fukushima T (1995) Preliminary results of Meiofauna and bacteria abundance in an environmental impact experiment. In: Yamazaki T, Aso K, Okano Y, Tsurusaki K (eds) Proceedings of the ISOPE-ocean mining symposium, Tsukuba, Japan, 21-22 Nov 1995, pp 181-186
61 Karl DM, LaRock PA, Morse JW, Sturges W (1976) Adenosine triphosphate in North Atlantic Ocean and its relationship to the oxygen minimum. Deep-sea Res I 23:81-88
62 Karl DM (1978) Distribution, abundance, and metabolic states of microorganisms in the water column and sediments of the Black Sea. Limnol Oceanogr 23:936-949   DOI
63 Karl DM (1980) Cellular nucleotide measurements and applications in microbial ecology. Microbiol Rev 44:739-796
64 Karl DM (1986) Determination of in situ microbial biomass, viability, metabolism, and growth. In: Poindexter JS, Leadbetter ER (eds) Bacteria in nature, Plenum Press Co, pp 85-176
65 Haberstroh PR, Karl DM (1989) Dissolved free amino acids in hydrothermal vent habitats of the Guaymas Basin. Geochim Cosmochim Acta 53:2937-2945   DOI   ScienceOn
66 Fukuda R, Ogawa H, Nagata T, Koike I (1998) Direct determination of carbon and nitrogen contents of natural bacterial assemblages in marine environments. Appl Environ Microbiol 64:3352-3358
67 Gooday AJ, Pfannkuche O, Lambshead PJD (1996) An apparent lack of response by metazoan meiofauna to phytodetritus deposition in bathyal north-eastern Atlantic. J Mar Biol Soc UK 76(2):297-310   DOI
68 Hammond DE, McManus J, Berelson WM, Kilgore TE, Pope RH (1996) Early diagenesis of material in equatorial Pacific sediments: stoichiometry and kinetics. Deep-sea Res II 43:1365-1412   DOI   ScienceOn
69 Harada K, Shibamoto Y, Kokubun H (1995) Chemical and radiochemical studies of sediment samples from the JET site. In: Yamazaki T, Aso K, Okano Y, Tsurusaki K (eds) Proceedings of the ISOPE-ocean mining symposium. ISOPE, Tsukuba, Japan, 21-22 November 1995 pp 187-192
70 Hill JK, Wheeler PA (2002) Organic carbon and nitrogen in the northern California current system: comparision of offshore, river plume, and coastally upwelled water. Prog Oceanogr 53:269-387
71 Hodson RE, Azam F (1977) Determination and biological significance of dissolved ATP in sea water. In: Borun GA (ed) Second bi-annual ATP methodology symposium, SAI Technology Co, San Diego, Calif. pp 127-140
72 Hodson RE, Maccubin AE, Pomeroy LR (1981) Dissolved adenosine triphosphate utilization by free-living and attached bacterioplankton. Mar Biol 64:43-51   DOI
73 Honjo S (1980) Material fluxes and modes of sedimenatation in the mesopelagic and bathypelagic zones. J Mar Res 38:53-97
74 Deming JW, Carpenter SD (2008) Factors influencing benthic bacterial abundance, biomass, and activity on the northern continental margin and deep basin of the Gulf of Mexico. Deep-sea Res II 55:2597-2606   DOI   ScienceOn
75 Honjo S, Dymond J, Collier R, Manganini SJ (1995) Export production of particles to the interior of the equatorial Pacific Ocean during the 1992 EqPac experiment. Deepsea Res II 42:831-870   DOI   ScienceOn
76 Danovaro R, Corinaldesi C, Luna GM, Magagnini M, Manini E, Pusceddu A (2009) Prokaryote diversity and viral production in deep-sea sediments and seamounts. Deep-sea Res II 56:738-747   DOI   ScienceOn
77 Deming JW, Yager PL (1992) Natural bacterial assemblages in deep-sea sediments: towards a global view. In: Rowe GT, Pariente V (eds) Deep-sea food chains and the global carbon cycle, Kluwer Academic Publishers Co., Norwell, pp 11-27
78 Dobbs FC, Findlay RH (1993) Analysis of microbial lipids to determine biomass and detect the response of sedimentary microorganisms to disturbance In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds) Handbook of methods in aquatic microbial ecology. Lewis Publishers, Boca Raton, pp 347-358
79 Eardly DF, Carton MW, Gallagher JM, Patching JW (2001) Bacterial abundance and activity in deep-sea sediments from the eastern North Atlantic. Prog Oceanogr 50:245-259   DOI   ScienceOn
80 Epstein SS, Rossel J (1995) Enumeration of sandy sediments bacteria: search for optimal protocol. Mar Ecol Prog Ser 117:289-298   DOI
81 Ernst W, Goerke H (1974) Adenosine-5'-triphosphat (ATP) in sedimenten und nematoden der nordostatlantischen Tiefsee. “Metor” Forschungsergeb. Reihe C 18:35-42
82 Fabiano M, Danovaro R (1998) Enzymatic activity, bacterial distribution, and organic matter composition in sediments of the Ross Sea (Antrartica). Appl Environ Microbiol 64:3838-3845