• Title/Summary/Keyword: Lateral stress

Search Result 801, Processing Time 0.023 seconds

Centrifuge Modeling and Numerical Analysis on Breakwater Construction (방파제 축조공사의 Centrifuge 모델링과 수치해석)

  • Yoo, Nam-Jae;Kim, Dong-Gun;Yoon, Dae-Hee
    • Journal of Industrial Technology
    • /
    • v.31 no.B
    • /
    • pp.81-90
    • /
    • 2011
  • Centrifuge modeling and numerical analysis on works of breakwater construction were performed to investigate the behavior of caisson type of breakwater and foundation treated with the method of DCM (Deep Cement Mixing) under the condition of wave action in field. In centrifuge modeling, construction sequence of breakwater caisson such as preparation of ground, treatment of DCM, installation of rubble mound, placement of breakwater caisson and lateral loading on the breakwater due to wave action were reconstructed. Lateral movement of model breakwater and ground reaction in the vertical direction were monitored during test. Stress concentration ratio between the untreated ground and the treated ground with DCM was evaluated from measurement of vertical stresses on each ground. Numerical analysis with the software of PLAXIS was carried to compare with Results of centrifuge model test. It was found that stability of model breakwater was maintained during stage of construction and the compared results about stress concentration ratio were in relatively good agreements.

  • PDF

Multi-axial Stress Analysis and Experimental Validation to Estimate of the Durability Performance of the Automotive Wheel (자동차용 휠의 내구성능 예측을 위한 복합축 응력해석 및 실험적 검증)

  • Jung, Sung-Pil;Chung, Won-Sun;Park, Tae-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.10
    • /
    • pp.875-882
    • /
    • 2011
  • In this paper, the finite element analysis model of the mult-axial wheel durability test configuration is created using SAMCEF. Mooney-Rivlin 2nd model is applied to the tire model, and the variation of the air pressure inside the tire is considered. Vertical load, lateral load and camber angle are applied to the simulation model. The tire rotates because of the friction contact with a drum, and reaches its maximum speed of 60 km/h. The dynamics stress results of the simulation and experiment are compared, and the reliability of the simulation model is verified.

Cycle Behavior of Exterior Joint of Flat Plate Slab and Column (포스트 텐션 플랫 플레이트 외부 접합부의 이력 거동)

  • Cho Jong;Ha Sang Su;Han Sang Whan;Lee Li-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.239-242
    • /
    • 2005
  • The purpose of this research was focused on substantiating an effects of tendon-layouts and compressed stress($=f_{pc}$) induced by post-tensioning on seismic performance of post-tensioned flat plate slab-column connection designed as non-participating system. To accomplish this purpose, an experimental research of flat plate exterior slab-column connections subjected to gravity load and reversed lateral displacement history are presented. As a result, tendon-layout is a main variable to influence failure mechanism, dissipated energy and lateral deformation capacity. Furthermore, compressed stress ($=f_{pc}$) induced by post-tensioning enhanced the seismic performance of flat plate slab.

  • PDF

Seismic assessment of thin steel plate shear walls with outrigger system

  • Fathy, Ebtsam
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.267-282
    • /
    • 2020
  • The seismic performance and failure modes of the dual system of moment resisting frames and thin steel plate shear walls (TSPSWs) without and with one or two outrigger trusses are studied in this paper. These structural systems were utilized to resist vertical and lateral loads of 40-storey buildings. Detailed Finite element models associated with nonlinear time history analyses were used to examine seismic capacity and plastic mechanism of the buildings. The analyses were performed under increased levels of earthquake intensities. The models with one and two outriggers showed good performance during the maximum considered earthquake (MCE), while the stress of TSPSWs in the model without outrigger reached its ultimate value under this earthquake. The best seismic capacity was in favour of the model with two outriggers, where it is found that increasing the number of outriggers not only gives more reduction in lateral displacement but also reduces stress concentration on thin steel plate shear walls at outrigger floors, which caused the early failure of TSPSWs in model with one outrigger.

Geometric Nonlinear Analysis of Underground Laminated Composite Pipes (기하학적 비선형을 고려한 지하매설 복합재료 파이프의 해석)

  • 김덕현;이인원;변문주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1988.10a
    • /
    • pp.30-35
    • /
    • 1988
  • An analytical study was conducted using the Galerkin technique to determine the behaviour of thin fibre-reinforced and laminated composite pipes under soil pressure. Geometric nonlinearity and material linearity have been assumed. We assumed that vertical and lateral soil pressure are proportional to the depth and lateral displacement of the pipe respectively. And we also assumed that radial shear stress is negligible because the ratio of the thickness to the radius of pipe is very small. We, in this paper, discuss the effect of the number of layer, fiber orientation, and soil property.

  • PDF

Surgical Reconstruction of Lateral Capsule-ligament Complex with Reinforcement by Periosteal Flap of Distal Fibula and Inferior Extensor Retinaculum for Chronic Lateral Ankle Instability (만성 족관절 불안정성에서 하신전 지지대 및 원위 비골 골막을 이용한 해부학적 재건술)

  • Kim, Young-Chang;Gwak, Heui-Chul;Jung, Kyung-Chil;Choi, Jang-Seok;Seo, Jin-Hyuk
    • Journal of Korean Foot and Ankle Society
    • /
    • v.11 no.2
    • /
    • pp.204-208
    • /
    • 2007
  • Purpose: To evaluate the results of surgical reconstruction of lateral capsule-ligament complex with reinforcement by periosteal flap of distal fibula and inferior extensor retinaculum for chronic lateral ankle instability. Materials and Methods: From April 2003 to August 2006, 62 patients with chronic lateral ankle instability were operated. There were 38 males and 24 females with a mean age of 39.6 years (range, $18{\sim}61$ years). Mean follow-up period was 32 months (range, $10{\sim}48$ months). All patients were checked with preoperative ankle anteroposterior and lateral view, stress anterior drawer and varus test using Telos device. The clinical results were graded according to the VAS and AOFAS scale. Results: VAS score improved from preoperative 8.2 points to 3.1 points. There were 38 patients who were excellent (above 90 points), 18 who were good (between 76 and 90 points), 5 who were fair (between 60 and 75 points), and 1 who was poor (below 60 points) according to the AOFAS ankle and hindfoot scale. The excellent and good results amounted to 90.3%. Conclusion: Surgical reconstruction of lateral capsule-ligament complex with reinforcement by periosteal flap of distal fibula and inferior extensor retinaculum is believed to be a effective method for chronic lateral ankle instability.

  • PDF

Complications of Scarf Osteotomy for Hallux Valgus (무지 외반증에서 시행한 Scarf 절골술의 합병증)

  • Nam, Il-Hyun;Ahn, Gil-Yeong;Moon, Gi-Hyuk;Lee, Yeong-Hyeon;Choi, Seong-Pil;Lee, Tae-Hun;Lee, Young-Hoon
    • Journal of Korean Foot and Ankle Society
    • /
    • v.18 no.4
    • /
    • pp.178-182
    • /
    • 2014
  • Purpose: The purpose of this study was to evaluate the frequency of troughing and stress fracture, which are the major complications of scarf osteotomy, and to suggest methods to prevent these complications. Materials and Methods: We reviewed 243 cases of 137 patients treated with the scarf osteotomy for hallux valgus from January 2005 to December 2012. The mean follow-up period was 2.8 years. During the scarf osteotomy, a long oblique longitudinal osteotomy was performed in order to decrease the possibility of troughing and stress fracture. Radiographs of lateral view of the foot were obtained and the thicknesses of the first metatarsal base at the sagittal plane were measured and compared. Results: There was no troughing during fragment translation and screw fixation intraoperatively. Radiographs of lateral view of the foot taken preoperatively and at the last follow-up showed that the mean thickness of the first metatarsal was 22.4 mm preoperatively and 21.6 mm at the last follow-up, with a mean difference of 0.8 mm. And no stress fracture was observed. Conclusion: To prevent troughing and stress fracture, a long oblique longitudinal cut, parallel to the first metatarsal plantar surface, was performed, making both ends of the proximal segment truncated cone-shape, and securing the strong bony strut of the proximal segment. No troughing or stress fracture was experienced with scarf osteotomy.

Characteristics of failure surfaces induced by embankments on soft ground

  • Hong, Eun-Soo;Song, Ki-Il;Yoon, Yeo-Won;Hu, Jong-Wan
    • Geomechanics and Engineering
    • /
    • v.6 no.1
    • /
    • pp.17-31
    • /
    • 2014
  • This paper investigates the development of failure surfaces induced by an embankment on soft marine clay deposits and the characteristics of such surfaces through numerical simulations and its comparative study with monitoring results. It is well known that the factor of safety of embankment slopes is closely related to the vertical loading, including the height of the embankment. That is, an increase in the embankment height reduces the factor of safety. However, few studies have examined the relationship between the lateral movement of soft soil beneath the embankment and the factor of safety. In addition, no study has investigated the distribution of the pore pressure coefficient B value along the failure surface. This paper conducts a continuum analysis using finite difference methods to characterize the development of failure surfaces during embankment construction on soft marine clay deposits. The results of the continuum analysis for failure surfaces, stress, displacement, and the factor of safety can be used for the management of embankment construction. In failure mechanism, it has been validated that a large shear displacement causes change of stress and pore pressure along the failure surface. In addition, the pore pressure coefficient B value decreases along the failure surface as the embankment height increases. This means that the rate of change in stress is higher than that in pore pressure.

Experimental investigation of local stress distribution along the cross-section of composite steel beams near joints

  • Sangwook Park;Patricia Clayton;Todd A. Helwig;Michael D. Engelhardt;Eric B. Williamson
    • Steel and Composite Structures
    • /
    • v.51 no.5
    • /
    • pp.563-573
    • /
    • 2024
  • This research experimentally evaluated the local stress distribution along the cross-section of composite beams under both positive and negative moments. The experiment utilized a large-scale, two-story, two-by-three bay steel gravity frame with a concrete on metal deck floor system. The composite shear connections, which are nominally assumed to be pinned under gravity loading, can develop non-negligible moment-resisting capacity when subjected to lateral loads. This paper discusses the local stress distribution, orshear lag effects, observed near the beam-to-column connections when subjected to combined gravity and lateral loading. Strain gauges were used for measurements along the beam depth at varying distances from the connection. The experimental data showed amplified shear lag effects near the unconnected region of the beam web and bottom flange under the applied loading conditions. These results indicate that strain does not vary linearly across the beam cross-section adjacent to the connection components. This insight has implications for the use of experimental strain gauge data in estimating beam demands near the connections. These findings can be beneficial in informing instrumentation plans for future experimental studies on composite beams.

Analysis of Composite Pile Behavior under Lateral Loadings (수평재하에 따른 복합말뚝의 거동분석)

  • Hwang, Taik-Jean
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1396-1404
    • /
    • 2012
  • A composite pile consisted of a concrete lower part with a steel tubular pile at upper part was installed by pre-drilling method. Seven pairs of strain gauges and inclinometer were attached on the pile in order to measure stresses and displacement along the pile during the lateral loading test. The results of instrumentation were analyzed using various theoretical approaches. The back analysis showed that the measured stresses were smaller than those of the calculated. The maximum stress is measured at the steel upper part and decreased rapidly with depth of the pile. The calculated lateral displacement along the pile provide very good agreement with the measured values if the coefficient of subgrade reaction is selected properly. The design concept of a composite pile is verified by the measured stresses and displacement which is within the tolerable limits of the pile.