• Title/Summary/Keyword: Lateral resistance

Search Result 565, Processing Time 0.038 seconds

The Ultimate Bearing Capacity and Estimation Method of Rigid Pile for Port Structures under Lateral Load (횡하중이 작용하는 항만구조물에서 짧은말뚝의 극한지지력 및 평가방법)

  • Kim, Byung-Il;Han, Sang-Jae;Kim, Jong-Seok;Kim, Do-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.1
    • /
    • pp.75-91
    • /
    • 2014
  • In this study the analysis is performed for influencing factors on the behavior of rigid piles (short pile) by research papers and case study. The results indicated that the point of virtual fixity should be calculated considering the relative stiffness of soil and pile, and Chang (1937) and P-Y method estimated the similar fixity. The values of ultimate resistances of a vertical pile to a lateral load are different for laboratory and field tests in cohesive soils and its ultimate values in laboratory tests are underestimated and in field tests are under or overestimated. The estimated resistance by Hansen (1961)'s method is similar to the value of field tests. The horizontal resistances to laterally loaded pile in cohesionless soils are overestimated in laboratory tests and generally overestimated in field tests. The ultimate resistances by Zhang (2005)'s method, used to the empirical distribution of the resistance, are similar to the test results. In the paper the calculating method and distribution of the ultimate resistance in cohesive soils are proposed. The estimated value by the proposed method is closer to the test results than any other method of calculating ultimate resistance of the piles embedded into cohesive soils.

An Experimental Study on the Shear Resistance of Horizontal Joints in Precast Concrete Large Panel Structures (대형판 프리캐스트 콘크리트 구조 수평접합부의 전단내력에 대한 실험적 연구)

  • 정창용;현원창;엄철환;어양석;김상식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.208-213
    • /
    • 1992
  • This research is related to the experimental verification of the shear resistance of horizontal joint in precast concrete large panel structures. a total of 9 spicemens was tested to assess their shear resistance. In the tests lateral forces have been applied to the specimen to cause shear failure while keeping the axial compression consistantly. The shear resistances of the specimens have been evaluated by investigating the deformations and failure modes of the specimens. From the test results, it is observed that the shear resistance of the horizontal joints of P.C panel structures are closely connected with shear friction mechanism.

  • PDF

Fabrication and Electrical Properties of Highly Organized Single-Walled Carbon Nanotube Networks for Electronic Device Applications

  • Kim, Young Lae
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.1
    • /
    • pp.66-69
    • /
    • 2017
  • In this study, the fabrication and electrical properties of aligned single-walled carbon nanotube (SWCNT) networks using a template-based fluidic assembly process are presented. This complementary metal-oxide-semiconductor (CMOS)-friendly process allows the formation of highly aligned lateral nanotube networks on $SiO_2/Si$ substrates, which can be easily integrated onto existing Si-based structures. To measure outstanding electrical properties of organized SWCNT devices, interfacial contact resistance between organized SWCNT devices and Ti/Au electrodes needs to be improved since conventional lithographic cleaning procedures are insufficient for the complete removal of lithographic residues in SWCNT network devices. Using optimized purification steps and controlled developing time, the interfacial contact resistance between SWCNTs and contact electrodes of Ti/Au is reached below 2% of the overall resistance in two-probe SWCNT platform. This structure can withstand current densities ${\sim}10^7A{\cdot}cm^{-2}$, equivalent to copper at similar dimensions. Also failure current density improves with decreasing network width.

Structural Performance of Seismic Resistance Capacity of Carbon Sheet-Angle Retrofitting Method in Wall-Slab Joint (탄소섬유와 L형강을 이용한 벽-슬래브 접합부의 보강성능)

  • Roh Gong-Ki;Park Tae-Won;Park Hyun-Soo;Chung Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.65-68
    • /
    • 2004
  • In the seismical capacity evaluation for RC structure wall-slab joint is very important factor. Because lateral load is resistance element and gravity load resistance element are acted mutually in the wall-slab joint. In this paper, to improve the seismic capacity of the wall-slab joint in the existing wall type apartments experiment which improve and retrofit a seismic capacity by unequal angle bracing and carbon sheet attachment are carried out. These methods are also economic and simple in mitigating seismic hazard, improve earthquake-resistance performance, and reduce risk level of building occupants. From the experimental results, the change of strength, degration of stiffness, and energy dissipation are evaluated. It can be concluded that these methods are effective in improving the seismic performance.

  • PDF

Ship Collision Risk Analysis of Bridge Piers (선박충돌로 인한 교각의 위험도 분석)

  • Lee, Seong-Lo;Bae, Yong-Gwi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.169-176
    • /
    • 2005
  • An analysis of the annual frequency of collapse(AF) is performed for each bridge pier exposed to ship collision. From this analysis, the impact lateral resistance can be determined for each pier. The bridge pier impact resistance is selected using a probability-based analysis procedure in which the predicted annual frequency of bridge collapse, AF, from the ship collision risk assessment is compared to an acceptance criterion. The analysis procedure is an iterative process in which a trial impact resistance is selected for a bridge component and a computed AF is compared to the acceptance criterion, and revisions to the analysis variables are made as necessary to achieve compliance. The distribution of the AF acceptance criterion among the exposed piers is generally based on the designer's judgment. In this study, the acceptance criterion is allocated to each pier using allocation weights based on the previous predictions.

Experimental Study for Improving Method of Load Bearing and Spalling Prevention of 100 MPa High Strength Concrete Column (100 MPa급 고강도 콘크리트 기둥의 폭렬방지 및 하중지지력 향상방안에 관한 실험적 연구)

  • Cho, Bum-Yean;Kim, Heung-Youl;Kim, Hyung-Jun;Kwon, In-Kyu;Kim, Kyeong-Ok
    • Fire Science and Engineering
    • /
    • v.26 no.6
    • /
    • pp.78-84
    • /
    • 2012
  • In this study, we have conducted a fire resistance experiment under loading condition on standard fire to evaluate the fire resistance performance according to applying reinforcement of methods for reinforcing the lateral confinement of reinforced bars (Wire Rope) and fire resistance reinforcement (Fiber-Cocktail) for 100 MPa high strength concrete column. In the result of the experiment, in case of the test objects applied by hoop, it has been shown as not possible to be applied as the fire resistance structure after satisfying the fire resistance performance for 43 minutes. In case of applying the wire rope as lateral confinement of reinforced bar, instead of hoop in identical volume ratio, it has been shown as possible to apply it to the buildings with under 4 floors after satisfying the fire resistance performance fro 69 minutes with any separate fire resistance process. Also, in case of applying with mixing wire rope method, instead of hoop, and Fiber-Cocktail mix method to prevent spall, it has been shown as possible to apply to the buildings with over 12 floors after satisfying the fire resistance performance for 180 minutes.

Effect of Initial Uniform Moment on Lateral Free Vibration of Arches (등분포 모멘트를 받는 아치의 횡 자유진동)

  • 염응준;한택희;임남형;강영종
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.3-10
    • /
    • 2002
  • Recently, arches are used structurally because of their high in-plane stiffness and strength, which result from their ability to transmit most of the applied loading by axial forces actions, so that the bending actions are reduced. On the other hand, the resistances of arches to (out-of-plane,) flexural-torsional behavior depend on the rigidities EI/sub y/, for lateral bending, GJ for Uniform torsion, and EI/sub w/ for warping torsion which are related to axial stress for flexural-torsional behavior. The resistance of an arch to out-of-plane behavior may be reduced by its in-plane curvature, and so it may require significant lateral bracing. Thus. it is supposed that In-plane preloading which cause an axial stress, have an effect on out-of-plane free vibration behavior of arches. Because axial stresses caused increase or decrease out-of-plane stiffness. But study about this substance is insufficient. In this thesis, We will study an effect of preloading on lateral free vibration of arches, using finite element method based on Kang and Yoo's curved beam theory (about curved beam element have 7 degree of freedom including warping) with FORTRAN programming.

  • PDF

Vertical distributions of lateral forces on base isolated structures considering higher mode effects

  • Tsai, C.S.;Chen, Wen-Shin;Chen, Bo-Jen;Pong, Wen-Shen
    • Structural Engineering and Mechanics
    • /
    • v.23 no.5
    • /
    • pp.543-562
    • /
    • 2006
  • Base isolation technology has been accepted as a feasible and attractive way in improving seismic resistance of structures. The seismic design of new seismically isolated structures is mainly governed by the Uniform Building Code (UBC-97) published by the International Conference of Building Officials. In the UBC code, the distribution formula of the inertial (or lateral) forces leads to an inverted triangular shape in the vertical direction. It has been found to be too conservative for most isolated structures through experimental, computational and real earthquake examinations. In this paper, four simple and reasonable design formulae, based on the first mode of the base-isolated structures, for the lateral force distribution on isolated structures have been validated by a multiple-bay three-story base-isolated steel structure tested on the shaking table. Moreover, to obtain more accurate results for base-isolated structures in which higher mode contributions are more likely expected during earthquakes, another four inertial force distribution formulae are also proposed to include higher mode effects. Besides the experimental verification through shaking table tests, the vertical distributions of peak accelerations computed by the proposed design formulae are in good agreement with the recorded floor accelerations of the USC University Hospital during the Northridge earthquake.

Suppressing Lateral Conduction Loss of Thin-film Cathode by Inserting a Denser Bridging Layer

  • Park, Jung Hoon;Lee, Seung Hwan;Kim, Hyoungchul;Yoon, Kyung Joong;Lee, Jong-Ho;Han, Seung Min;Son, Ji-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.304-307
    • /
    • 2015
  • To reduce the lateral conduction loss of thin-film-processed cathodes, the microstructure of the thin-film cathode is engineered to contain a denser bridging layer in the middle. By doing so, the characteristic crack-like pores that separate the cathode domains in thin-film-processed cathodes and hamper lateral conduction are better connected and, as a result, the sheet resistance of the cathode is effectively reduced by a factor of 5. This induces suppression of the lateral conduction loss and expansion of the effective current collecting area; the cell performance is improved by more than 30%.

Elastic Lateral Buckling Strength of Singly Stepped Beams with Load Height Effect (하중고 효과를 고려한 일단 변단면보의 탄성좌굴강도식 개발)

  • Park Jong-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.1
    • /
    • pp.63-69
    • /
    • 2006
  • New design equations for calculating the lateral-torsional buckling moment resistances of singly stepped I-section beams subjected to general loading on the top flange are suggested based on the investigations of elastic finite-element analyses. The new equations presented in this study are compared with current moment gradient modifiers presented by other researchers and specifications. The study considered almost loading cases on buildings and bridges. The proposed equations should be easily used to calculate the lateral-torsional buckling moment resistance of stepped I-beams.

  • PDF