• 제목/요약/키워드: Lateral loads

검색결과 769건 처리시간 0.03초

모래지반의 상대밀도에 따른 횡방향 반복재하 시 말뚝의 극한지지력 평가 (Effect of Relative Density on Lateral Load Capacity of a Cyclic Laterally Loaded Pile in Sandy Soil)

  • 백성하;김준영;이승환;정충기
    • 한국지반공학회논문집
    • /
    • 제32권4호
    • /
    • pp.41-49
    • /
    • 2016
  • 해상구조물을 지지하는 말뚝기초는 바람, 조류, 파랑 등의 영향으로 횡방향 반복하중을 지배적으로 받는다. 본 연구에서는 횡방향 반복하중이 말뚝의 횡방향 극한지지력에 미치는 영향을 평가하기 위하여, 서로 다른 세 가지 상대밀도(40%, 70%, 90%)로 조성된 모래지반에서 모형말뚝시험을 수행하였다. 상대밀도 40%로 조성 된 모래지반에서는 횡방향 반복재하 시 말뚝 주변 지반이 조밀해짐에 따라 횡방향 극한지지력이 증가하였다. 반면, 상대밀도 70%와 90%로 조성 된 모래지반에서는 횡방향 반복재하 시 말뚝 주변 지반의 교란효과로 인하여 횡방향 극한지지력이 감소하였다. 이러한 횡방향 극한지지력의 증가 및 감소효과는 횡방향 반복하중의 크기가 커질수록 더욱 명확하게 나타났으며, 모래지반의 포화 여부에는 큰 영향을 받지 않았다. 모형시험 결과를 활용하여 모래지반의 상대밀도, 횡방향 반복하중의 크기에 따른 말뚝의 횡방향 극한지지력 산정 식을 제안하였고, 이를 횡방향 반복하중을 지배적으로 받는 말뚝의 설계 시 활용 가능하도록 하였다.

동적 수평하중에 의한 단일 경사말뚝의 거동특성 (Behaviour Characteristics of Single Batter Pile under Dynamic Lateral Loads)

  • 김지성;노정섭;강기천
    • 한국지반공학회논문집
    • /
    • 제33권9호
    • /
    • pp.49-60
    • /
    • 2017
  • 본 연구는 모형시험을 통해 반복수평하중이 작용하는 단일경사말뚝의 거동 특성을 파악하고자 한다. 반복하중은 일방향과 양방향으로 작용 시켰으며, 지반의 상대밀도를 달리하여 수평저항력과 휨모멘트의 변화 등을 분석하였다. 그 결과, 일방향 및 양방향 반복수평하중이 작용할 경우 Out batter, Plumb, In batter 순으로 수평저항력과 최대 휨모멘트는 증가하였다. 최대 휨모멘트 발생위치는 일방향 보다 양방향 반복수평하중을 가할 때 조금 더 깊은 곳에서 나타났다. 또한, 상층의 모멘트는 Out batter, Plumb, In batter 순으로 모멘트가 증가하나 하층의 경우 Out batter, Plumb, In batter 순으로 감소하였고 일방향에 비해 양방향 반복수평하중이 작용할 때 상 하층의 모멘트 변화가 작게 나타났다.

전좌굴을 고려한 복합적층원통셸의 거동해석 (Behavior Analysis of Laminated Composite Cylindrical Shells with Prebuckling)

  • 이종선
    • 한국생산제조학회지
    • /
    • 제9권5호
    • /
    • pp.150-156
    • /
    • 2000
  • The objective of this study is to investigate effects of prebuckling on the buckling of laminated composite cylindrical shells. Axial compression and lateral pressure are considered for laminated composite cylindrical shells with the ratios of length to radius. The shell walls are made of a laminate with several symmetric ply orientations. The study was made using finite difference energy method, utilizing the nonlinear bifurcation branch with nonlinear prebuckling displacements. The results are compared to the buckling loads determined when membrane prebuckling displacements are considered. Review the influence of nonlinear prebuckling for the buckling loads, the difference between the actual and classical buckling loads are increased as the increments with the ratios of length to radius, for which is applied the axial compression, but almost same for the lateral pressure.

  • PDF

장대레일궤도의 온도좌굴에 영향을 미치는 매개변수 연구 (Parametric Study on Thermal Buckling of CWR Tracks)

  • 최동호;김호배
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2001년도 춘계학술대회 논문집
    • /
    • pp.295-302
    • /
    • 2001
  • The lateral stability of curved continuous welded rail (CWR) is studied fur buckling prevention. This study includes the influences of vehicle induced loads on the thermal buckling behavior of straight and curved CWR tracks. quasi-static loads model is assumed to determine the uplift region, which occurs due to the vertical track deformation induced by wheel loads of vehicle. Parametric numerical analyses are performed to calculate the upper and lower critical buckling temperatures of CWR tracks. The parameters include track lateral resistance, track curvature, longitudinal stiffness, tie-ballast friction coefficient, axle load, truck center spacing, and the ratio of lateral to vertical vehicle load. This study provides a guideline for the improvement or stability for dynamic buckling in on tracks.

  • PDF

박벽 복합재료 보의 횡-비틀림 좌굴 해석 (Lateral-torsional buckling analysis of thin-walled composite beam)

  • 김영빈;이재홍
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.489-496
    • /
    • 2002
  • The lateral buckling of a laminated composite beam is studied. A general analytical model applicable to the lateral buckling of a composite beam subjected to various types of loadings is derived. This model is based on the classical lamination theory, and accounts for the material coupling for arbitrary laminate stacking sequence configuration and various boundary conditions. The effects of the location of applied loading on the buckling capacity are also included in the analysis. A displace-based one-dimensional finite element model is developed to predict critical loads and corresponding buckling modes for a thin-walled composite beam with arbitrary boundary conditions. Numerical results are obtained for thin-walled composites under central point load, uniformly distributed load, and pure bending with angle-ply and laminates. The effects of fiber orientation location of applied load, and types of loads on the critical buckling loads are parametrically studied.

  • PDF

On the evaluation of critical lateral buckling loads of prismatic steel beams

  • Aydin, R.;Gunaydin, A.;Kirac, N.
    • Steel and Composite Structures
    • /
    • 제18권3호
    • /
    • pp.603-621
    • /
    • 2015
  • In this study, theoretical models and design procedures of the behavior of thin-walled simply supported steel beams with an open cross section under a large torsional effect are presented. I-sections were chosen as the cross section types. Firstly, the widely used differential equations for the lateral buckling for the pure bending moment effect in a beam element were adopted for the various moment distributions along the span of the beam. This solution was obtained for both mono-symmetric and bisymmetric sections. The buckling loads were then obtained by using the energy method. When using the energy method to solve the problem, it is possible to locate the load not only on the shear center but also at several points of the section depth. Buckling loads were obtained for six different load types. Results obtained for different load and cross section types were checked with ABAQUS software and compared with several standard rules.

Experimental study of masonry walls strengthened with CFRP

  • Wei, Chang-Qin;Zhou, Xin-Gang;Ye, Lie-Ping
    • Structural Engineering and Mechanics
    • /
    • 제25권6호
    • /
    • pp.675-690
    • /
    • 2007
  • In order to study the ductility and the lateral load carrying capacity of the masonry walls strengthened with CFRPs (Carbon Fiber Reinforced Polymer sheets), three pieces of masonry walls subjected to cyclic loads with low frequency and vertical load of constant amplitude have been tested. Two different strengthening methods have been used. The strengthening efficiency is affected by the strengthening method. A simplified calculation approach has been introduced based on the experimental test results, and the theoretical results agree reasonably well with the experimental results. It is found that the critical loads, the critical displacements, the ultimate loads, the ultimate displacements and the ductile coefficients of the masonry walls strengthened with CFRPs improve remarkably (6%~57%). Therefore, the masonry structures strengthened with CFRPs are of better ductility and of better lateral load carrying capacity than the masonry structures without any strengthening measurements.

수평하중을 받는 플랫 플레이트 슬래브 해석을 위한 수정된 등가골조모델 (Modified Equivalent Frame Models for Flat Plate slabs Under Lateral Load)

  • 박영미;조경현;한상환;이리형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.272-275
    • /
    • 2004
  • This study is to propose a modified equivalent frame method under lateral loading. ACI 318-02 allows the equivalent frame method to conduct slab analysis subjected to lateral loads. However, current method can not predict the behavior of the slabs particularly under lateral loading because the equivalent frame method in the ACI 318 has been developed against gravity loads. This study provides more precise model for the analysis of the flat plate slabs under lateral loading. The model reflect the force transfer mechanism of slabs, column and torsional member more accurately than the existing model. The accuracy of this model is verified by compared with finite element method analysis results.

  • PDF

내부 포스트 텐션 플랫 플레이트 슬래브 기둥 접합부의 이력거동 (Cyclic Behavior of Interior Joints in Post Tensioned Flat Plate Slab Systems)

  • 기성훈;한상환;하상수;이리형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.107-110
    • /
    • 2005
  • In general, post tensioned (PT) flat plate slab systems have been used as a Gravity Load Resisting System (GLRS) in buildings. Thus, these systems should be constructed with Lateral Force Resisting Systems (LFRS) such as shear walls and moment resisting frames. When lateral loads such as winds or earthquakes occur, lateral load resisting systems undergo displacement by which connected gravity systems experience lateral displacement. Therefore, GLRS should have some lateral displacement capacity in order to hold gravity loads under severe earthquakes and winds. Since there are the limited number of researches on PT flat plate slab systems, the behavior of the systems have not been well defined. This study investigated the cyclic behavior of post tensioned flat plate slab systems. For this purpose, an experimental test was carried out using 4 interior PT flat plate slab-column specimens. All specimens have bottom reinforcement in the slab around the slab-column connection. Test variables of this experimental study are vertical load level and tendon distribution patterns.

  • PDF

수평재하시험을 이용한 철도교 기초의 P-y 곡선에 관한 연구 (Back-Calculated P-y curves from Lateral Load Tests for Railway Bridge Foundation)

  • 김종칠;사공명;조국환
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.821-828
    • /
    • 2011
  • A significantly larger lateral load and moment are applied on a high speed railway bridge foundation than other bridge foundations. Therefore most of bridge foundations on Honam high speed railway project were designed by high strength steel pipe piles to resist lateral load and moment, which caused the increase of construction costs. In order to perform optimum design, it is important to estimate accurate lateral resistance when designing this type of structure. Lateral load tests were carried out based on the field design data with the purpose of examining the lateral behavioral characteristics of a railway bridge foundation. The standard load test method(ASTM D 3966) was used for field tests by applying twice of design load. Total four load tests were performed on high speed railway bridge foundations with strain gages installed by every 1m along piles to measure load-resistance characteristics under applied lateral loads. The back-calculated P-y curves from strain gages were compared with estimated P-y curves using theoretical methods based on geotechnical investment data. Back-calculated P-y curves from field tests for sand and clay ground conditions were presented in this paper, which are different from theoretical P-y curves. By using the research results of this study, more accurate estimations of pile design under lateral loads can be available for similar geotechnical conditions.

  • PDF