• 제목/요약/키워드: Lateral load resistance

검색결과 221건 처리시간 0.035초

전통목구조 시스템의 도리방향 골조의 횡저항 성능에 대한 실험 (Experiment of Lateral Load Resistance of Dori-Directional Frame in Traditional Wood Structure System)

  • 이영욱;홍성걸;김남희;정성진;황종국;배병선
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.241-246
    • /
    • 2007
  • The capacity of a lateral load resistance of a joint with Jangbu-connection of Dori-directional frame in traditional wood structure system was studied, through experiments of 1/2 scaled and T-shaped 7 subassemblies of joint of Dori-directional frame for Deawoongjeon of Bongjungsa. From the experiment, it was shown that the capacity of a lateral load resistance was influenced by the vertical load confining joint and not influenced by the number of Chok and the depth of Changbang, And lateral load resistance mechanism is developed by the restraint between the vertical load and the contacting edge of column; if structure is pushed to the left, the top-right end of Pyeongju contacts with Changbang and left Changbang loses the contacts with Pyeongju and therefore only right Changbang can resist to lateral load.

  • PDF

Bending Behavior of Nailed-Jointed Cross-Laminated Timber Loaded Perpendicular to Plane

  • Pang, Sung-Jun;Kim, Kwang-Mo;Park, Sun-Hyang;Lee, Sang-Joon
    • Journal of the Korean Wood Science and Technology
    • /
    • 제45권6호
    • /
    • pp.728-736
    • /
    • 2017
  • In this study, the bending behavior of cross-laminated timber (CLT) connected by nails were investigated. Especially, the load-carrying capacity of the nail-jointed CLT under out-of-plane bending was predicted by the lateral resistance of the used nails. Three-layer nail-jointed CLT specimens and a nail connection were manufactured by 30 mm (thickness) ${\times}$ 100 mm (width) domestic species (Pinus koraiensis) laminas and Ø$3.15{\times}82mm$ nails using a nail-gun. Shear test for evaluating the nail lateral resistance and bending test for evaluating the load-carrying capacity of the nail-jointed CLT under out-of-plane bending were carried out. As a result, two lateral resistance of the used nail, the 5% fastener offset value and the maximum value, were 913 N and 1,534 N, respectively. The predicted load-carrying capacity of the nail-jointed CLT by the 5% offset nail lateral resistance was similar to the yield points on the actual load-displacement curve of the nail-jointed CLT specimens. Meanwhile, the nail-jointed CLT specimens were not failed until the tension failure of the bottom laminas occurred beyond the maximum lateral resistance of the nails. Thus, the measured maximum load carrying capacities of the nail-jointed CLT specimens, approximately 12,865 N, were higher than the predicted values, 7,986 N, by the maximum nail lateral resistance. This indicates that the predicted load-carrying capacity can be used for designing a structural unit such as floor, wall and roof able to support vertical loads in a viewpoint of predicting the actual capacities more safely.

수평재하시험을 이용한 철도교 기초의 P-y 곡선에 관한 연구 (Back-Calculated P-y curves from Lateral Load Tests for Railway Bridge Foundation)

  • 김종칠;사공명;조국환
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.821-828
    • /
    • 2011
  • A significantly larger lateral load and moment are applied on a high speed railway bridge foundation than other bridge foundations. Therefore most of bridge foundations on Honam high speed railway project were designed by high strength steel pipe piles to resist lateral load and moment, which caused the increase of construction costs. In order to perform optimum design, it is important to estimate accurate lateral resistance when designing this type of structure. Lateral load tests were carried out based on the field design data with the purpose of examining the lateral behavioral characteristics of a railway bridge foundation. The standard load test method(ASTM D 3966) was used for field tests by applying twice of design load. Total four load tests were performed on high speed railway bridge foundations with strain gages installed by every 1m along piles to measure load-resistance characteristics under applied lateral loads. The back-calculated P-y curves from strain gages were compared with estimated P-y curves using theoretical methods based on geotechnical investment data. Back-calculated P-y curves from field tests for sand and clay ground conditions were presented in this paper, which are different from theoretical P-y curves. By using the research results of this study, more accurate estimations of pile design under lateral loads can be available for similar geotechnical conditions.

  • PDF

Out-of-plane performance of infill masonry walls reinforced with post-compressed wedges under lateral-concentrated push load

  • Sanghee Kim;Ju-Hyun Mun;Jun-Ryeol Park;Keun-Hyeok Yang;Jae-Il Sim
    • Earthquakes and Structures
    • /
    • 제26권6호
    • /
    • pp.489-499
    • /
    • 2024
  • Infill masonry walls are vulnerable to lateral loads, including seismic, wind, and concentrated push loads. Various strengthening metal fittings have been proposed to improve lateral load resistance, particularly against seismic loads. This study introduces the use of post-compressed wedges as a novel reinforcement method for infill masonry walls to enhance lateral load resistance. The resistance of the infill masonry wall against lateral-concentrated push loads was assessed using an out-of-plane push-over test on specimens sized 2,300×2,410×190 mm3. The presence or absence of wedges and wedge spacing were set as variables. The push-over test results showed that both the unreinforced specimen and the specimen reinforced with 300 mm spaced wedges toppled, while the specimen reinforced with 100 mm spaced wedges remained upright. Peak loads were measured to be 0.74, 29.77, and 5.88 kN for unreinforced specimens and specimens reinforced with 100 mm and 300 mm spaced wedges, respectively. Notably, a tighter reinforcement spacing yielded a similar strength, as expected, which was attributed to the increased friction force between the masonry wall and steel frame. The W-series specimens exhibited a trend comparable to that of the displacement ductility ratio. Overall, the findings validate that post-compressed wedges improve the out-of-plane strength of infill masonry walls.

Fire performance curves for unprotected HSS steel columns

  • Shahria Alam, M.;Muntasir Billah, A.H.M.;Quayyum, Shahriar;Ashraf, Mahmud;Rafi, A.N.M.;Rteil, Ahmad
    • Steel and Composite Structures
    • /
    • 제15권6호
    • /
    • pp.705-724
    • /
    • 2013
  • The behaviour of steel column at elevated temperature is significantly different than that at ambient temperature due to its changes in the mechanical properties with temperature. Reported literature suggests that steel column may become vulnerable when exposed to fire condition, since its strength and capacity decrease rapidly with temperature. The present study aims at investigating the lateral load resistance of non-insulated steel columns under fire exposure through finite element analysis. The studied parameters include moment-rotation behaviour, lateral load-deflection behaviour, stiffness and ductility of columns at different axial load levels. It was observed that when the temperature of the column was increased, there was a significant reduction in the lateral load and moment capacity of the non-insulated steel columns. Moreover, it was noted that the stiffness and ductility of steel columns decreased sharply with the increase in temperature, especially for temperatures above $400^{\circ}C$. In addition, the lateral load capacity and the moment capacity of columns were plotted against fire exposure time, which revealed that in fire conditions, the non-insulated steel columns experience substantial reduction in lateral load resistance within 15 minutes of fire exposure.

복합말뚝의 수평 거동 분석 (Analysis of lateral behavior of composite pile)

  • 선석윤;곽노경;이송
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.1195-1205
    • /
    • 2008
  • Composite piles have been used in ground conditions where conventional piles are unsuitable or uneconomical. They may consist of a combination of timber and concrete pile in Europe. One method of doing this was to drive a steel tube to just below water level, and a concrete pile was lowered down it and driven to the required level where corrosion was susceptible in U.K. Recently, a fiber reinforced polymer (FRP) composite pile was developed to use in many marine locations for piers and waterfront buildings in the USA(Hoy, 1995; Phair, 1997). A steel composite (SC) pile reinforced concrete spun pile with steel tube was also proposed and used for the foundation acting a high lateral earthquake load. Composite piles have been developed and researched to increase lateral resistance or to prevent corrosion in marine structures. In paper, the composite pile consisting of the steel upper portion and the concrete lower portion is proposed and are carried out several tests to confirm the capacity of the pile such as lateral load test, dynamic load tests and bending test. It is noted that the composite pile would be a economical pile being capable of increasing lateral resistance.

  • PDF

Lateral buckling formula of stepped beams with length-to-height ratio factor

  • Park, Jong Sup
    • Structural Engineering and Mechanics
    • /
    • 제18권6호
    • /
    • pp.745-757
    • /
    • 2004
  • Lateral-torsional buckling moment resistances of I-shaped stepped beams with continuous lateral top-flange bracing under a single point load on the top flange and negative end moments were investigated. Stepped beam factors and a moment gradient correction factor suggested by Park et al. (2003, 2004) were used to develop new lateral buckling formula for beam designs. From the investigation of finite element analysis (FEA), new lateral buckling formula of beams with singly or doubly stepped member changes and with continuous lateral top-flange bracing subjected to a single point load on top flange and end moments were developed. The new design equation includes the length-to-height ratio factor to account for the increase of lateral-torsional buckling moment resistance as the increase of length-to-height ratio of stepped beams. The calculation examples for obtaining lateral-torsional buckling moment resistance using the new design equation indicate that engineers should easily determine the buckling capacity of the stepped beams.

H 파일과 프리캐스트 콘크리트로 형성된 벽체의 횡저항성능에 대한 실험적 연구 (An Experimental Study on Lateral Load Resistance of a Wall Structure Composed of Precast Concrete and H-Pile)

  • 서동주;강덕만;이현기;문도영
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제24권3호
    • /
    • pp.9-17
    • /
    • 2020
  • 이 연구의 목적은 프리캐스트 콘크리트 벽체와 H-pile로 구성된 벽체구조의 횡하중저항 성능을 평가하는 것이다. 이러한 형태의 구조는 옹벽 및 방음벽 기초 구조물로 사용된다. 실제 크기의 목업시험체를 설계하였으며, 실험체를 제작하였다. 대상 구조체의 설계횡하중은 54.6kN이다. 실제 현장에서 6.5m의 파일과 유사한 변형 프로파일을 갖는 실험체의 파일의 길이를 이론적으로 결정하였으며, 1.5m로 제작하였다. 실험중 벽체의 횡방향 변위가 파일의 변형률을 모니터링 하였으며, 균열의 발생을 육안 조사하였다. 실험으로부터 평가된 하중 및 변형 능력을 설계능력과 비교하였다. 실험결과는 설계하중을 저항하는데 충분한 성능을 보유하고 있음을 나타냈다.

유공강판의 횡력저항능력에 대한 실험적 연구 (Experimental Study on the Characteristics of the Lateral Load Resistance of Perforated Steel Plates)

  • 박정아;이영욱
    • 대한건축학회논문집:구조계
    • /
    • 제36권5호
    • /
    • pp.137-146
    • /
    • 2020
  • In this study, an experimental research was performed to find the characteristics of the lateral load resistance of perforated steel plates which could be developed to retrofit existing RC framed buildings. The Specimens are tested with variables such as aspect ratio of plate, the ratio of perforation area, and the ratio of perforated diameter to strip which is more than 0.6. The lateral load was applied with displacement control until to reach 3.5% drift ratio. Through the experimental results, it was shown that the maximum strength of all specimens were reached at around 0.5% drift ratio and maintained until 3.5% drift ratio. From results, the modified strength prediction formula was derived with the variable ratio of the perforated diameter to strip. To evaluate seismic retrofit performance of RC frames using perforated steel plate, a simple design process was presented.

Finite element analysis of granular column for various encasement conditions subjected to shear load

  • Jaiswal, Akash;Kumar, Rakesh
    • Geomechanics and Engineering
    • /
    • 제29권6호
    • /
    • pp.645-655
    • /
    • 2022
  • Granular columns have recently found widespread use in underground construction. The behaviour of granular columns under vertical loads has been extensively studied, specifically in relation to vertical load capacity obtained by bulging of the column body, including the behaviour after encasement of material. Determining the shear strength of loose soils reinforced with granular columns has received less attention. After the observations of lateral deformation near the toe of the embankment, attempts have been made to strengthen the lateral strength of granular columns. The purpose of this research is to look into the effects of different encasement conditions on the lateral load capacity of granular columns. This was accomplished by three-dimensional finite element analysis with FEM software. Various normal pressures and two different encasement configurations, namely single layer encasement and double layer encasement, with differing tensile strengths, were used in this study to determine their effect on lateral resistance. The failure envelope for a single column planted in loose sand was used to analyse the findings for three different granular column diameters, as well as the impact of different encasement conditions. According to the findings, the inclusion of a Granular Column enhanced the shear strength and overall stiffness of the loose sand bed, and the encasement of the Granular Column helped in deriving higher lateral resistance.