• Title/Summary/Keyword: Lateral deviation

Search Result 248, Processing Time 0.028 seconds

The Study on the Correlation of the Ejection Fraction of Multi Gated Blood Pool Scan and Echocardiography According to the Condition of Cardiac Function (심장기능상태의 분류에 따른 게이트심장혈액풀 검사와 심장초음파의 심박출계수 상관관계에 관한 고찰)

  • Lee, Dong Hun;Park, Jang Won;Nam, Ki Pyo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.19 no.1
    • /
    • pp.57-61
    • /
    • 2015
  • Purpose We considered the correlation of Ejection Fraction (EF) which was analyzed by Multi Gated Blood Pool Scan (MUGA) and Echocardiography (ECHO) for the patients who were classified according to the condition of cardiac function. Materials and Methods We analyzed the patients (female 60) who were diagnosed with breast cancer and were examined by both MUGA and ECHO. The 30 patients (age: $58.27{\pm}13.48$) who were analyzed into less than 50% to 70% of EF were categorized as normal group and the other 30 patients (age: $53.70{\pm}8.45$) who were analyzed into less than 50% of EF were categorized as abnormal group. Statistical analysis with SPSS ver. 18 was applied. Results Each of the value of mean and standard deviation of normal group was $66.43{\pm}5.80$ (MUGA), $60.50{\pm}4.93$ (ECHO). There was a significant difference (p<0.001). Each of the value of mean and standard deviation of abnormal group was $41.93{\pm}7.58$ (MUGA), $41.70{\pm}11.49$ (ECHO). There was no significant difference (p>0.001). In the result, all 30 cases of normal group showed the same reading. 8 out of 30 cases in abnormal group showed inconsistency of the reading. Conclusion We could confirm the correlation of the EF in MUGA and ECHO statistically. There was difference between abnormal groups from the result of reading. If we are aware of the result according to the different cardiac function categorization, MUGA and ECHO can be used as even more accurate interchangeable test.

  • PDF

Analysis of Set-up Errors during CT-scan, Simulation, and Treatment Process in Breast Cancer Patients (유방암 환자의 모의치료, CT 스캔 및 치료 과정에서 발생되는 준비 오차 분석)

  • Lee, Re-Na
    • Radiation Oncology Journal
    • /
    • v.23 no.3
    • /
    • pp.169-175
    • /
    • 2005
  • Purpose: Although computed tomography (CT) simulators are commonly used in radiation therapy department, many Institution still use conventional CT for treatments. In this study the setup errors that occur during simulation, CT scan (diagnostic CT scanner), and treatment were evaluated for the twenty one breast cancer patients. Materials and Methods: Errors were determined by calculating the differences in isocenter location, SSD, CLD, and locations of surgical clips implanted during surgery. The anatomic structures on simulation film and DRR image were compared to determine the movement of isocenter between simulation and CT scan. The isocetner point determined from the radio-opaque wires placed on patient's surface during CT scan was moved to new position if there was anatomic mismatch between the two images Results: In 7/21 patients, anatomic structures on DRR Image were different from the simulation Image thus new isocenter points were placed for treatment planning. The standard deviations of the diagnostic CT setup errors relative to the simulator setup in lateral, longitudinal, and anterior-posterior directions were 2.3, 1.6, and 1.6 mm, respectively. The average variation and standard deviation of SSD from AP field were 1.9 mm and 2.3 mm and from tangential fields were 2.8 mm and 3.7 mm. The variation of the CLD for the 21 patients ranged from 0 to 6 mm between simulation and DRR and 0 to 5 mm between simulation and treatment. The group systematic errors analyzed based on clip locations were 1.7 mm in lateral direction, 2.1 mm in AP direction, and 1.7 mm in SI direction. Conclusion: These results represent that there was no significant differences when SSD, CLD, clips' locations and isocenter locations were considered. Therefore, it is concluded that when a diagnostic CT scanner is used to acquire an image, the set-up variation is acceptable compared to using CT simulator for the treatment of breast cancer. However, the patient has to be positioned with care during CT scan in order to reduce the setup error between simulation and CT scan.

Evaluation of Setup Errors for Tomotherapy Using Differently Applied Vacuum Compression with the Bodyfix Immobilization System (토모테라피 치료 시 Bodyfix System에서 진공압박에 따른 환자 위치잡이오차(Setup errors)의 평가)

  • Jung, Jae-Hong;Cho, Kwang-Hwan;Lee, Jeong-Woo;Kim, Min-Joo;Lim, Kwang-Chae;Moon, Seong-Kwon;Kim, Yong-Ho;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.22 no.2
    • /
    • pp.72-78
    • /
    • 2011
  • The aim of this study is to evaluate the patient's setup errors in TomoTherapy (Hi-Art II, TomoTherapy, USA) Bodyfix system (Medical Intelligence, Ele-kta, Schwabmuchen, Germany) pressure in the vacuum compression, depending on and were evaluated. Bodyfix immobilization system and vacuum pressure was compression applied to the patients who received Tomotherapy thoracic and abdominal area, 21 patients were selected and TomoTehpay treatment total 477 of MVCT images were obtained. The translational (medial-lateral: ML, anterior-posterior: AP, superior-inferior: SI directions) and rolling were recorded and analyzed statistically. Using Pearson's product-moment coefficient and One-way ANOVA, the degree of correlation depending on the different vacuum pressure levels were statistically analyzed for setup errors from five groups (p<0.05). The largest average and standard deviation of systematic errors were 6.00, 5.95 mm in the AP and SI directions, respectively. The largest average of random errors were 4.72 mm in the SI directions. The correlation coefficients were 0.485, 0.244, and 0.637 for the ML-Roll, AP-Vector, and SI-Vector, respectively. SI-Vector direction showed the best relationship. In the results of the different degree of vacuum pressure in five groups (Pressure range: 30~70 mbar), the setup errors between the ML, SI in both directions and Roll p=0.00 (p<0.05) were shown significant differences. The average errors of SI direction in the vacuum pressure of 40 mbar and 70 mbar group were 4.78 mm and -0.74 mm, respectively. In this study, the correlation between the vacuum pressure and the setup-errors were statistically analyzed. The fact that setup-errors in SI direction is dependent in vacuum pressure considerly setup-errors and movement of interal organs was identified. Finally, setup-errors, and it, based on the movement of internal organs in Bodyfix system we should apply more than 50 mbar vacuum pressure. Based on the results of this study, it is suggested that accuracy of the vacuum pressure and the quantitative analysis of movement of internal organs and the tumor should be studied.

Measurement of Rectal Rodiation dose in the Patients with Uterine Cervix fencer using In Vivo Dosimetry(Diode Detector) (자궁경부암 환자에서 In vivo dosimetry(Diode detector)를 이용할 직장선량의 측정)

  • Kim, Sung-Kee;Kim, Wan-Sun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.1
    • /
    • pp.29-37
    • /
    • 2004
  • Purpose : A rectum and a bladder should be carefully considered in order to decrease side effects when HDR patient of uterine cervix cancer. Generally speaking, the value of dosimeter at a rectum and a bladder only depends on the value of a planning equipment, while some analyses of the value of dosimetry at rectum with TLD has been reported Or the contrary, it is hardly to find a report with in vivo dosimetry(diode detector). On this thesis, we would like to suggest the following. When a patient of uterine cervix cancer is in therapy, it is helpful to put a diode detector inside of a rectum in order to measure the rectal dose Based upon the result of the dosimetry, the result can be used as basic data at decreasing side effects. Materials and Methods : Six patients of uterine cervix cancer(four with tandem and ovoid, one with cylinder, and the other one with tandem and cylinder) who had been irradiated with HDR. Ir-192 totally 28 times from February 2003 to June 2003. We irradiated twice in the same distant spots with anterior film and lateral film whenever we measured with a diode detector. Then we did planning and compared each film. Results : The result of the measurement 4 patients with a diode detector is the following. The average and deviation from 3 patients with tandem and ovoid were $274.1{\pm}13.4cGy$, from 1 patient with tandem and ovoid were $126.1{\pm}7.2cGy$, from 1 patient with cylinder were $99.7{\pm}7.1cGy$, and from 1 patient with tandem and cylinder were $77.7{\pm}11.5cGy$. Conclusion : It is difficult to predict how the side effect of a rectum since the result of measurement with a diode detector depends on the state of a rectum. According to the result of the study, it is effective to use a TLD or an in vivo dosimetry and measure a rectum in order to consider the side effect. It is very necessary to decrease the amount of irradiation by controlling properly the duration of the irradiation and gauze packing, and by using shield equipments especially when side effects can be expected.

  • PDF

The Role of Air-Vacuum Cushion Device in Patients with Rectal Cancer in Radiation Therapy (직장암 환자에서 방사선치료시 Air-vacuum Cushion의 유용성)

  • Kim Ki-Hwan;Cho Moon-June;Kang No-Hyun;Kim Dong-Wuk;Kim Jun-Sang;Jang Ji-Young;Kim Jae-Sung
    • Radiation Oncology Journal
    • /
    • v.19 no.3
    • /
    • pp.287-292
    • /
    • 2001
  • Prupose : We analyzed setup errors induced by using air-vacuum cushion as immobilization device in patients with rectal cancer. Materials and methods : We had treated the twenty patients with rectal cancer by 6 MV, 10 MV X-ray from Aug. 1998 to Aug. 1999 at Chungnam National University Hospital. All patients were treated at prone position. They were separated to two groups, control group, 10 patients using styrofoam, and test group, 10 patients using styrofoam and air-vacuum cushion. We measured errors of posterior field for x, y axis and lateral field for z, y axis with simulation film and EPID image using a matching technique. Results : In control group, the mean displacement values of pelvic bone landmark for x axis and y axis were 0.02 mm. 0.78 mm, respectively and the standard deviations of systematic error were 2.13 mm, 2.40 mm, respectively and the standard deviation of random error were 1.46 mm. 1.51 mm, respectively. In test group, the mean displacement values of x axis and y axis were -0.33 mm. 0.81 mm, respectively and the standard deviations of systematic error were 1.71 mm, 3.08 mm, respectively and the standard deviations of random errors were 1.40 mm. 1.88 mm, respectively. The mean displacement values of z axis and y axis were 2.98 mm. 0.74 mm, respectively and the standard deviations of systematic error were 4.75 mm, 2.65 mm, respectively and standard deviations of random error were 2.69 mm. 1.86 mm, respectively. The statistical difference of field size by using air vacuum cushion between two groups in posterior direction and lateral direction was not shown. Conclusion : We think that use of air-vacuum cushion may not be an advantage for improving setup accuracy in rectal cancer patients.

  • PDF

THE STDUY OF THE RELAPSE OF HARD AND SOFT TISSUE AFTER MAXILLARY PROTRACTION (상악골 전방견인 후 경조직과 연조직의 재발에 관한 연구)

  • Yang, Jun-Ho;Park, Soo-Byung;Son, Woo-Sung
    • The korean journal of orthodontics
    • /
    • v.27 no.3 s.62
    • /
    • pp.373-389
    • /
    • 1997
  • The purpose of this stdudy was to evaluate the effect of maxillary protraction and the relapse of hard and soft tissue after maxillary protraction. For this study 29 patients who were treated with maxillary protractor and labiolingual archwire were selected. Their mean age was 9 years 4 months and mean treatment period was 8.5 months. Lateral cephalograms were taken at pretreatment, immediately after treatment and one to three months after removal of the maxillary protractor. They were traced on skeletodental and soft tissue structures based on Burstone's analysis and analyzed by Quick-Ceph Image Digitizing System(ORTHODONTIC PROCESSING). The mean and standard deviation between pretreatment and posttreatment and between posttreatment and retention period for each cephalometric variable were calculated. Student t-test was used to determine the statistical significance of the changes in each variable. Correlation coefficients between hard tissue and soft tissue were used to determine interrelationship. The results were as follows. 1. After maxillayy protraction, the maxilla and maxillary dentition moved antero-inferiorly, the mandibld and mandibular dentition moved postero-interiorly and palatal plane rotated antero-superiorly by $0.59^{\circ}$. 2. After maxillary protraction, the soft tissue of upper lip moved antero-interiorly with the movement of hard tissue but the antero-posterior position of lower lip was stable in spite of the change of hard tissue. The thickness of upper lip was decreased and that of lower lip was increased after maxillary Protraction. 3. During the retention period, the position of jaws was relatively stable but upper and lower anterior teeth and antero-superiorly rotated palatal plane relapsed to original position. 4. During the retention period, the soft tissue of lips was stable antero-posteriorly and moved mote inferiorly than posttreatment. 5. The correlation coefficients between the postion of upper and lower incisal edge and that position of lips were high, especially in horizontal change.

  • PDF

A Kinematic Analysis of Uchi-mata(inner thigh reaping throw) by Kumi-kata types in Judo (유도 맞잡기 타입에 따른 허벅다리걸기의 Kinematic 분석[I])

  • Kim, Eui-Hwan;Cho, Dong-Hee;Kwon, Moon-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.1
    • /
    • pp.63-87
    • /
    • 2002
  • The purpose of this study was to analyze the kinematic variables when Uchi-mata(inner thigh reaping throw) performing by Kumi-kata(engagement position, basic hold) types A, B(A: grasping part-behind neck lapel, B: chest lapel) in Judo with three dimensional analysis technique DLT method by videography. The subjects were four male judokas who have been training in Yong-In University(YIU), on Korean Representative level and Uchi-mata is their tokui-nage(favorite technique), the throwing form was filmed on two S-VHS 16mm video camera( 30frame/sec. Panasonic). Kinematic variables were temporal, posture, and COG. The data collection was performing by Uchi-mata. Six good trials were collected for each condition (type A, B) among over 10 trials. The mean values and the standard deviation for each variable were obtained and used as basic factors for examining characteristics of Uchi-mata by Kumi-kata types. The results of this analysis were as follows : 1) Temporal variables The total time elapsed(TE) by Uchi-mata of types A, B were 1.45, 1.56 sec. respectively. Types A shorter than B. 2) Posture variables In performing of Uchi-mata, the range of flexion in type A, left elbow was $45^{\circ}$ and B was $89^{\circ}$ from Event 2(E2) to Event 6(E6). Type A and B were quite different in right elbow angle in Event1(E1). Left shoulder angle of type A was extended and type B was flexed in E4. Both types right shoulder angles were showed similar pattern. Also both hip angles(right/left) were showed similar pattern. When type A performed Uchi-mata the knee-angle of supporting foot showed $142^{\circ}$in the 1st stage of kake phase[KP], and extended to $147^{\circ}$in the 2nd stage of KP. And the foot-ankle angle of supporting foot showed $83^{\circ}$in the 1st stage of KP, and extended to $86^{\circ}$in the 2nd stage of KP. moreover, The knee angle of attacking foot showed $126^{\circ}$in the 1st stage of KP, and extended to $132^{\circ}$in the 2nd stage of KP, and the foot-ankle angle of attacking foot showed $106^{\circ}$in the 1st stage of KP, and extended to $121^{\circ}$in the 2nd stage of KP. When type B performed Uchi-mata the knee-angle of supporting foot showed $144^{\circ}$in the 1st stage of KP, and extended to $154^{\circ}$in the 2nd stage of KP. And the foot-ankle angle of supporting foot showed $83^{\circ}$in the 1st stage of KP, and extended to $92^{\circ}$in the 2nd stage of KP. moreover, The knee angle of attacking foot showed $132^{\circ}$in the 1st stage of KP, and extended to $140^{\circ}$in the 2nd stage of KP, and the foot-ankle angle of attacking foot showed $103^{\circ}$in the 1st stage of KP, and extended to $115^{\circ}$in the 2nd stage of KP. During Uchi-mata performing, type A showed pulling pattern and type B showed lift-pulling pattern. As Kumi-kata types, it were different to upper body(elbow, shoulder angle), but mostly similar to lower body(hip, knee, ankle angle) on both types. 3) C. O. G. variables When the subjects performed Uchi-mata, COG of type A, B up and down in vertical aspect was 71cm, 73.8cm in height from the foot in the 2nd stage of KP. As Kumi-kata types, it were different on medial-lateral direction aspect but weren't different in Kuzushi phase on vertical direction aspect.

Descriptive Study for Sonographic Morphology of the 1st Facet of Subscapularis Footprint (견갑하건 부착부의 제1부착면에 대한 초음파 소견의 기술적 연구)

  • Sohn, Hoon-Sang;Wi, Chan Kuk;Shon, Min Soo
    • Journal of the Korean Orthopaedic Association
    • /
    • v.54 no.4
    • /
    • pp.343-352
    • /
    • 2019
  • Purpose: The purpose of this study was to document the sonographic morphology of the subscapularis footprint, particularly the 1st facet, of the non-pathologic subscapularis tendon and footprint, and analyze the correlation between the size of the 1st facet and the demographic variables. Materials and Methods: Between March 2015 and December 2017, retrospectively data analysis was performed for the ultrasound (US) scans of 115 consecutive shoulder (mean age 53.4 years, range 23-74 years) with non-pathologic subscapularis tendon and footprint. The sonographic findings of the 1st facet of the subscapularis footprint was a very unique, flat, broad, and plane angle in the upward direction, which were distinguished from the other facets. On US, the transverse (medio-lateral) and longitudinal (superior-inferior) length of the 1st facet on axis of the humerus shaft were recorded. The demographic variables, including age, site, body height, weight, body mass index (BMI), and arm length, were reviewed. Results: On US, the mean transverse length of the 1st facet was 12.75 mm (range 10.54-14.50 mm, standard deviation [SD] 0.712) and the mean longitudinal length was 12.22 mm (range 9.20-13.30 mm, SD 0.888). The transverse and longitudinal length of the size of the 1st facet were significantly greater in males than in females (p<0.001, p=0.001). Of the demographic data (body height, weight, BMI, arm length) that showed a significant positive linear correlation, the correlation with body height (transverse r=0.749, p<0.001; longitudinal r=0.642, p<0.001) showed the strongest relationship, and the correlation with the BMI was weakly related. The relationships between the size of the 1st facet to site/age were not statistically significant or appeared to have no linear correlation. Conclusion: The structural and morphologic features of the 1st facet of the subscapularis footprint on the US were identified. This will provide anatomic knowledge of an US examination for subscapularis tendon pathology.