• Title/Summary/Keyword: Lateral Vibration of Beam

Search Result 68, Processing Time 0.032 seconds

Transverse dynamics of slender piezoelectric bimorphs with resistive-inductive electrodes

  • Schoeftner, Juergen;Buchberger, Gerda;Benjeddou, Ayech
    • Smart Structures and Systems
    • /
    • v.18 no.2
    • /
    • pp.355-374
    • /
    • 2016
  • This paper presents and compares a one-dimensional (1D) bending theory for piezoelectric thin beam-type structures with resistive-inductive electrodes to ANSYS$^{(R)}$ three-dimensional (3D) finite element (FE) analysis. In particular, the lateral deflections and vibrations of slender piezoelectric beams are considered. The peculiarity of the piezoelectric beam model is the modeling of electrodes in such a manner that is does not fulfill the equipotential area condition. The case of ideal, perfectly conductive electrodes is a special case of our 1D model. Two-coupled partial differential equations are obtained for the lateral deflection and for the voltage distribution along the electrodes: the first one is an extended Bernoulli-Euler beam equation (second-order in time, forth order in space) and the second one the so-called Telegrapher's equation (second-order in time and space). Analytical results of our theory are validated by 3D electromechanically coupled FE simulations with ANSYS$^{(R)}$. A clamped-hinged beam is considered with various types of electrodes for the piezoelectric layers, which can be either resistive and/or inductive. A natural frequency analysis as well as quasi-static and dynamic simulations are performed. A good agreement between the extended beam theory and the FE results is found. Finally, the practical relevance of this type of electrodes is shown. It is found that the damping capability of properly tuned resistive or resistive-inductive electrodes exceeds the damping performance of beams, where the electrodes are simply linked to an optimized impedance.

Integrity evaluation of the welded structure bogie for the railway freight car (철도화차용 용접구조대차의 건전성평가에 관한 연구)

  • Hong J.S.;Ham Y.S.;Chung H.C.;Paik Y.N.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.361-364
    • /
    • 2005
  • Some bogie frames manufactured in 1999, 2000 year have the fatal problem. Three or four years later, the cracked end beam among them have discovered in 2002, 2003 year. The crack situation of the end beam have a bad effect on brake system. In that case, the cars would be in danger of derailment. To improve the end beam, a research of covering the whole field of welded type bogie frame was started. Main line real tests were performed at Young-Dong line. The stress of main positions for bogie frame was measured. Also up-down direction and left-right direction vibration acceleration of the bogie frame were measured. At this time the tests were performed for the three types bogie. The test result concludes that the crack cause of the end beam is not brake load but vibration at running mainly. It is estimated that the life of the improved car which end beam reinforced is safe within the car permitted life(25 years). The improvement methods of the end beam are presented by construction modification, parts modification. The integrity evaluation is inspected by analysis the real line test results, the improvement methods of the end beam.

  • PDF

Passive shape control of force-induced harmonic lateral vibrations for laminated piezoelastic Bernoulli-Euler beams-theory and practical relevance

  • Schoeftner, J.;Irschik, H.
    • Smart Structures and Systems
    • /
    • v.7 no.5
    • /
    • pp.417-432
    • /
    • 2011
  • The present paper is devoted to vibration canceling and shape control of piezoelastic slender beams. Taking into account the presence of electric networks, an extended electromechanically coupled Bernoulli-Euler beam theory for passive piezoelectric composite structures is shortly introduced in the first part of our contribution. The second part of the paper deals with the concept of passive shape control of beams using shaped piezoelectric layers and tuned inductive networks. It is shown that an impedance matching and a shaping condition must be fulfilled in order to perfectly cancel vibrations due to an arbitrary harmonic load for a specific frequency. As a main result of the present paper, the correctness of the theory of passive shape control is demonstrated for a harmonically excited piezoelelastic cantilever by a finite element calculation based on one-dimensional Bernoulli-Euler beam elements, as well as by the commercial finite element code of ANSYS using three-dimensional solid elements. Finally, an outlook for the practical importance of the passive shape control concept is given: It is shown that harmonic vibrations of a beam with properly shaped layers according to the presented passive shape control theory, which are attached to an resistor-inductive circuit (RL-circuit), can be significantly reduced over a large frequency range compared to a beam with uniformly distributed piezoelectric layers.

Modeling of Beam Structures from Modal Parameters (모달 파라미터를 이용한 보 구조물의 모델링)

  • Hwang, Woo-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.519-522
    • /
    • 2006
  • Accurate modeling of a dynamic system from experimental data is the bases for the model updating or heath monitoring of the system. Modal analysis or modal test is a routine process to get the modal parameters of a dynamic system. The modal parameters include the natural frequencies, damping ratios and mode shapes. This paper presents a new method that can derive the equations of motion for a dynamic system from the modal parameters obtained by the modal analysis or modal test. The present method based on the relation between the eigenvalues and eigenvectors of the state space equation derives the mass, damping and stiffness matrices of the system. The modeling of a cantilevered beam from modal parameters is an example to prove the efficiency and accuracy of the present method. Using the lateral displacements only, not the rotations, gives limited information for the system. The numerical verification up to now gives reasonable results and the verification with the test data is scheduled.

  • PDF

Exact vibration of Timoshenko beam combined with multiple mass spring sub-systems

  • El-Sayed, Tamer A.;Farghaly, Said H.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.6
    • /
    • pp.989-1014
    • /
    • 2016
  • This paper deals with the analysis of the natural frequencies, mode shapes of an axially loaded beam system carrying ends consisting of non-concentrated tip masses and three spring-two mass sub-systems. The influence of system design and sub-system parameters on the combined system characteristics is the major part of this investigation. The effect of material properties, rotary inertia and shear deformation of the beam system is included. The end masses are elastically supported against rotation and translation at an offset point from the point of attachment. Sub-systems are attached to center of gravity eccentric points out of the beam span. The boundary conditions of the ordinary differential equation governing the lateral deflections and slope due to bending of the beam system including developed shear force frequency dependent terms, due to the sub.system suspension, have been formulated. Exact formulae for the modal frequencies and the modal shapes have been derived. Based on these formulae, detailed parametric studies are carried out. The geometrical and mechanical parameters of the system under study have been presented in non-dimensional analysis. The applied mathematical model is presented to cover wide range of mechanical, naval and structural engineering applications.

A Mathematical Approach for Vibration Analysis of an Pickup Actuator (수학적 전개에 의한 픽업 액추에이터의 진동 분석)

  • Lee, Kyung Taek
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.792-798
    • /
    • 2012
  • This study shows the vibration characteristics of an actuator with six wire-suspensions, used in optical pickups of optical disc drives (ODDs). In this paper, the vibration characteristics of this beam structure is induced mathematically. To obtain vibration modes of focusing direction, the vibration analysis is achieved in lateral and longitudinal directions of the structure. The accuracy of induced vibration characteristics is proved by comparing mode frequencies with a finite element analysis. Finally, it is shown that mode shapes can be modified by changing design parameters in mathematical expressions.

  • PDF

Study on the Dynamic Torsional Instability of a Thin Beam (비틀림 하중을 받는 얇은 빔의 동적 불안정성에 관한 연구)

  • 박진선;주재만;박철희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.185-190
    • /
    • 1995
  • In recent years, many researcher have been interested in the stability of a thin beam. Among them, Pai and Nayfeh[1] had investigated the nonplanar motion of the cantilever beam under lateral base excitation and chaotic motion, but this study is associated with internal resonance, i.e. one to one resonance. Also Cusumano[2] had made an experiment on a thin beam, called Elastica, under bending loads. In this experiment, he had shown that there exists out-of-plane motion, involving the bending and the torsional mode. Pak et al.[3] verified the validity of Cusumano's experimental works theoretically and defined the existence of Non-Local Mode(NLM), which is came out due to the instability of torsional mode and the corresponding aspect of motions by using the Normal Modes. Lee[4] studied on a thin beam under bending loads and investigated the routes to chaos by using forcing amplitude as a control parameter. In this paper, we are interested in the motion of a thin beam under torsional loads. Here the form of force based on the natural forcing function is used. Consequently, it is found that small torsional loads result in instability and in case that the forcing amplitude is increasing gradually, the motion appears in the form of dynamic double potential well, finally leads to complex motion. This phenomenon is investigated through the poincare map and time response. We also check that Harmonic Balance Method(H.B.M.) is a suitable tool to calculate the bifurcated modes.

  • PDF

Effects of Partial dampers on the Vibration Damping Behavior of a Single Lap Joint Beam (겹침이음부를 갖는 보의 진동감쇠거동에 미치는 부분층댐퍼의 효과)

  • 박정일;최낙삼
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.04a
    • /
    • pp.57.1-60
    • /
    • 1999
  • This paper presents the effects of partial dampers on the lateral vibration of beams. Both shear and normal stresses in the viscoelastic layer were studied. Analytical results were compared with those obtained by a finite element method. Effects of the size of partial dampers on the system loss factors and resonant frequencies were discussed.

  • PDF

A Mathematical Approach for Vibration Analysis of a Pickup Actuator (수학적 전개에 의한 픽업 액추에이터의 진동 분석)

  • Lee, Kyung Taek
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.11
    • /
    • pp.1128-1136
    • /
    • 2012
  • This paper analyzes the vibration characteristics of an optical pickup actuator, which has six wire-suspensions and is used in optical disc drives(ODDs). The vibration characteristics of the actuator is mathematically described by analyzing its beam configuration and motion condition confined to lateral and longitudinal directions of the beams. The accuracy of the vibration characteristics is proved by comparing mode frequencies with a finite element analysis. Finally, it is shown that mode frequencies and shapes can be modified by changing design parameters in mathematical expressions.

Spectral Element Modeling for Rotating Shafts (회전축에 대한 스펙트럴요소 모델링)

  • Lee, Jea-Sang;Yong, Suk-Jin;U-Sik, Lee
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.749-754
    • /
    • 2007
  • In this paper, the vibration of a rotating shaft with a thin rigid disk is considered. It is assumed that the shaft has uniform, circular cross-section. Based on the Timoshenko-beam theory, the transverse displacements and slops in two lateral directions, the axial displacement, and the torsional deformation are considered. The spectral element method is used for the vibration analysis of the rotating shaft with a thin rigid disk, which is modeled by two shaft elements and a thin rigid disk element.

  • PDF