• Title/Summary/Keyword: Lateral Vibration Test

Search Result 122, Processing Time 0.023 seconds

Investigation of Damping Ratio of Steel Plate Concrete (SC) Shear Wall by Lateral Loading Test & Impact Test (횡방향 가력실험 및 충격실험을 통한 강판콘크리트(SC) 전단벽의 감쇠비 평가)

  • Cho, Sung Gook;So, Gi Hwan;Park, Woong Ki
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.79-88
    • /
    • 2013
  • Steel plate concrete (SC) composite structure is now being recognized as a promising technology applicable to nuclear power plants as it is faster and suitable for modular construction. It is required to identify its dynamic characteristics prior to perform the seismic design of the SC structure. Particularly, the damping ratio of the structure is one of the critical design factors to control the dynamic response of structure. This paper compares the criteria for the damping ratios of each type of structures which are prescribed in the regulatory guide for the nuclear power plant. In order to identify the damping ratio of SC shear wall, this study made SC wall specimens and conducted experiments by cyclic lateral load tests and vibration tests with impact hammer. During the lateral loading test, SC wall specimens exhibited large ductile capacities with increasing amplitude of loading due to the confinement effects by the steel plate and the damping ratios increased until failure. The experimental results show that the damping ratios increased from about 6% to about 20% by increasing the load from the safe shutdown earthquake level to the ultimate strength level.

Effects of Vibration Rolling on Ankle Range of Motion and Ankle Muscle Stiffness in Stroke Patients: A Randomized Crossover Study

  • Park, Seju;Jeong, Hojin;Kim, Byeonggeun
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.12 no.1
    • /
    • pp.2272-2278
    • /
    • 2021
  • Background: Vibration stimulation has emerged as a treatment tool to help reduce spasticity during physical therapy. Spasticity includes problems of reduced range of motion (ROM) and stiffness. However, the benefits of vibration rolling (VR) on interventions for stroke patients are unclear. Objectives: This study aimed to investigate the effect of VR intervention on the ankle ROM and ankle stiffness in stroke patients. Design: A randomized crossover study. Methods: Seven stroke patients completed two test sessions (one VR and one non-VR [NVR]) in a randomized order, with 48 hours of rest between each session. Participants completed intervention and its measurements on the same day. The measurements included ankle dorsiflexion and plantarflexion ROM and stiffness of ankle muscles, including the tibialis anterior, medial, and lateral gastrocnemius muscle. Results: After VR, ankle dorsiflexion ROM, lateral gastrocnemius stiffness, and medial gastrocnemius stiffness improved significantly (all P<.05). After NVR, only the lateral gastrocnemius stiffness improved significantly (P<.05). Furthermore, in the cases of changed values for ankle dorsiflexion ROM and lateral gastrocnemius stiffness were compared within groups, VR showed a more significant difference than NVR (P<.05) Conclusion: VR improved ankle ROM and muscle stiffness. Therefore, we suggest that practitioners need to consider VR as an intervention to improve dorsiflexion ROM and gastrocnemius stiffness in stroke patients.

The Study on the Influence Analysis of Shimmy&Shake due to Tire Design Parameters (타이어 설계인자별 Shimmy&Shake 영향도 분석에 관한 연구)

  • Bae, Chul-Yong;Kwon, Seong-Jin;Kim, Chan-Jung;Lee, Bong-Hyun;Koo, Byoung-Kook;Rho, Guck-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.415-420
    • /
    • 2007
  • The objective of this study analyzes the influence of shimmy & shake phenomena due to tire design parameters which are RFV(radial force variation), DB(dynamic balance), RRO(radial run out) and air pressure. These parameters are inspection items for Q.C. after tires are manufactured. In order to analyze these parameters on this study, vehicle driving tests were achieved. The test modes are two type which are constant speed and coast-down driving. On this tests the dynamic characteristics of shimmy & shake are measured by the 3-axises accelerometers at the various positions that are knuckle(left & right), rack pinion, seat and steering wheel. In according to analyzed results, the longitudinal vibration of knuckle parts affects the lateral vibration of rack pinion and this vibration affects the lateral vibration of steering wheel that is the shimmy phenomena. Also the over and under DB by comparison with normal DB and the increment of RRO affect the occurrence of shimmy & shake phenomena.

  • PDF

Method of Lateral Vibration Control of Korean High-Speed Railway 350x (한국형고속열차 횡방향 진동제어)

  • Kim, Sang-Soo;Kim, Young-Kuk;Park, Chan-Kyoung;Kim, Jong-Sun;Kim, Ki-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.974-978
    • /
    • 2006
  • To improve the riding comfort and to increase the speed of high-speed railway, it needs active suspension system for railway more and more. In Korea, Korean Train Express (KTX) was opened to commercial traffic 2years ago. Korea High-speed Railway (HSR 350x) is being developed and succeeded 350km/h test run. With the increase of the speed, the vibration control of the high-speed railway becomes important to meet high ride quality. In this paper, we suggest the install of lateral damper to HSR 350x. The result shows better ride quality.

  • PDF

Investigation of the BSR Noise characteristics in Seat Cushion-frame with respect to Vibration Durability Test Using Multi-simulator (다축 가진기를 이용한 시트 쿠션 프레임의 내구 전후 BSR 진동특성 연구)

  • Choi, Ho-Il;Nam, Jae-Hyun;Kang, Jae-Young;Park, Jung-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4776-4783
    • /
    • 2014
  • Many studies have examined the reduction of primary noise sources, but quality-related noise, such as BSR, is rarely studied. This study describes the quantitative BSR test method using a multi-axial simulator. The sine sweep test was conducted to detect the system resonance and its relation to BSR noise with high frequency. This method is applied to the seat frame with/without the vibration durability test. The results showed that the $1^{st}$ lateral resonance leads to higher BSR frequency noise. In addition, the reduction of the lateral mode system stiffness after the durability test results in a decrease in the BSR noise in sine sweep test mode.

A Study on Dynamic Properties Estimation of On-Site Railroad Track (현장 궤도 동특성 추정에 관한 연구)

  • 이희현;남보현;박용진;이종득
    • Journal of the Korean Society for Railway
    • /
    • v.4 no.2
    • /
    • pp.39-46
    • /
    • 2001
  • In this paper, train running test and lateral resistant force test are conducted before and after sprinkling the ballast stabilizer in order to investigate the dynamic behaviors and parameters of the railroad track. The measured results are used to confirm the effect of the stabilizer and to validate the numerical results. From this paper, it is known that the stabilizer used in this study has excellent effect on increasing the vertical rigidity and the lateral resistance, and some correction factors should be considered on masses and rigidities of the track components in order to calculate the vibration magnitude reasonably due to running train.

  • PDF

Aeroelastic Behaviors of Self-anchored Suspension Bridge with Lateral Sag of Main Cable(I) -Focused on the Behavior of Girder- (횡방향 새그를 가진 자정식 현수교의 공탄성 거동(I) -주형의 거동을 중심으로-)

  • Kwon, Soon Duck;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.2 s.31
    • /
    • pp.259-267
    • /
    • 1997
  • Wind tunnel test results and their interpretations focused on the behavior of girder, which were performed to study the aerodynamic stability of a self-anchored suspension bridge with lateral sag of main cable, are presented in this paper The shape of the girder which has the best aerodynamic stability was selected based on the section model test under uniform and turbulent flow conditions. Good performance of the selected section was confirmed in the full bridge model test. Measured flutter derivatives are presented for further study. Buffeting response was investigated to check the fatigue problem and serviceability of the bridge but it was found to be acceptable from the engineering point of view. Even though the drag coefficient of the girder had high value, the amplitude of the lateral vibration was found to be very low. This may be due to the restraint provided by the lateral sag of the cables.

  • PDF

Effect of Vibration Suppression Device for GNSS/INS Integrated Navigation System Mounted on Self-Driving Vehicle

  • Park, Dong-Hyuk;Ahn, Sang-Hoon;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.2
    • /
    • pp.119-126
    • /
    • 2022
  • This paper presents a method to reduce the vibration-induced noise effect of an inertial measurement device mounted on a self-driving vehicle. The inertial sensor used in the GNSS/INS integrated navigation system of a self-driving vehicle is fixed directly on the chassis of vehicle body so that its navigation output is affected by the vibration of the vehicle's engine, resulting in the degradation of the navigational performance. Therefore, these effects must be considered when mounting the inertial sensor. In order to solve this problem, this paper proposes to use an in-house manufactured vibration suppression device and analyzes its impact on reducing the vibration effect. Experimental test results in a static scenario show that the vibration-induced noise effect is more clearly observed in the lateral direction of the vehicle, but can be effectively suppressed by using the proposed vibration suppression device compared to the case without it. In addition, the dynamic positioning test scenario shows the position, speed, and posture errors are reduced to 74%, 67%, and 14% levels, respectively.

A Study on Noise and Vibration Reduction of an NC Lathe Gear Box (NC 선반 기어박스의 소음.진동 저감에 관한 연구)

  • Choi, Young-Hyu;Park, Seon-Kyun;Bae, Byung-Tae;Jung, Taek-Soo;Kim, Chung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.94-99
    • /
    • 2000
  • When operating NC lathe, gear box which is equipped with gear train and spindle sometimes generates loud noise and excessive vibrations. In order to identify their causes, In this study, torsional and lateral vibration characteristics including critical speeds of the gear train-spindle system are first analyzed by using torsional and lateral vibration models of the gear train and shafts. Natural frequencies and modes of the gear box structure are also analyzed by impulse hammer test. Furthermore, measured vibration and noise signals are analyzed and compared with theoretical analysis results. At last it is concluded that the cause of the excessive mise and vibration is the resonance between gear meshing frequency including its side bands, shaft bending and torsional vibration frequencies, and the natural frequencies of th gear box structure. Consequently the noise and vibration levels are greatly reduced by avoiding resonance between them through the redesign of the gear module.

  • PDF

Control Method of Wind Induced Vibration Level for High-rise buildings (초고층 건물의 풍가속도응답 조절 기법)

  • Kim Ji-Eun;Seo Ji-Hyun;Park Hyo-Seon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.375-382
    • /
    • 2005
  • In this paper, a practical control method of wind-induced vibration of high-rise buildings is presented in the form of resizing algorithm. In the structural design process for high-rise buildings, the lateral load resisting system for the building is more often determined by serviceability design criteria including wind-induced vibration level. Even though many drift method have been developed in various forms, no practical design method for wind induced vibration has been developed so far. Structural engineers rely upon heuristic or experience in designing wind induced vibration. The performance of the proposed method is evaluated by comparing wind-induced vibration levels estimated both from approximate techniques and wind tunnel test.

  • PDF