• Title/Summary/Keyword: Lateral Subgrade Reaction Modulus

Search Result 12, Processing Time 0.02 seconds

Application of Horizontal Subgrade Reaction Modulus to Bridge Abutment Design after Soil Improvement (연약지반 개량후 교대구간 수평지반반력계수 적용 사례)

  • Kim, Kyung-Tae;Park, See-Boum;Kim, Chang-Hyun;Lee, Jong-Bum;Yoon, Yea-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1228-1236
    • /
    • 2006
  • In soft ground, There are many case that Bridge Abutment is constructed after soil improvement in order to reduce the Negative Friction and prevent from Lateral Soil movements of Bridge Abutment. That section of Horizontal Subgrade Reaction $Modulus(K_h)$ derivation has much important mean due to Horizontal Stability of Abutment. It is come from behavior of Pile and Soil within depth of $1/\beta$. After Soil Improvement, however, If Bridge Abutment was construction, It's not impossible to carry out Field Investigation After Ground of Improved at design stage. Therefore, It's not able to derivate Horizontal Subgrade Reaction $Modulus(K_h)$. Therefore, in this case of study compare with Field Construction Test Data in order to derivation of Horizontal Subgrade Reaction $Modulus(K_h)$ and Reliability in terms of ground of Bridge Abutment by Sand Compaction Pile(SCP) during design of The 2nd Bridge Connection Road of Incheon International Airport. In this paper determine, Soil Property(The rate of strength increase, $c_u$ so on) and Horizontal Subgrade Reaction $Modulus(K_h)$ after soil improvement at design stage.

  • PDF

Estimation of Coefficient of Horizontal Subgrade Reaction by the Inverse Analysis on the Lateral Load Test Results (수평재하시험 역해석을 통한 수평지반반력계수 산정)

  • Ryu, Soo-Yong;Kwak, No-Kyung;Park, Min-Chul;Jeong, Sang-Guk;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.8
    • /
    • pp.15-24
    • /
    • 2012
  • Even though decision of coefficient of horizontal subgrade reaction is important in analysis for pile under lateral load, the behavior of pile under lateral loading is estimated differently due to using established suggestion. Therefore this study estimates coefficient of horizontal subgrade reaction by using Chang's method or numerical inverse analysis method with the result of lateral load test. Then this study investigates the adequacy and reliability for coefficient of horizontal subgrade reaction. The analytical results of coefficient of horizontal subgrade reaction with lateral load test showed that coefficient of horizontal subgrade reaction with Chang's method was underestimated as compared with inverse analysis. Deformation modulus of foundation by Standard Specifications for Highway Bridges and Eo${\fallingdotseq}$1,400~1,600N showed similar range like range of coefficient of horizontal subgrade reaction with lateral load test.

Nonlinear response of laterally loaded rigid piles in sand

  • Qin, Hongyu;Guo, Wei Dong
    • Geomechanics and Engineering
    • /
    • v.7 no.6
    • /
    • pp.679-703
    • /
    • 2014
  • This paper investigates nonlinear response of 51 laterally loaded rigid piles in sand. Measured response of each pile test was used to deduce input parameters of modulus of subgrade reaction and the gradient of the linear limiting force profile using elastic-plastic solutions. Normalised load - displacement and/or moment - rotation curves and in some cases bending moment and displacement distributions with depth are provided for all the pile tests, to show the effect of load eccentricity on the nonlinear pile response and pile capacity. The values of modulus of subgrade reaction and the gradient of the linear limiting force profile may be used in the design of laterally loaded rigid piles in sand.

Application of the Lateral Subgrade Reaction Modulus in Landing Pier (잔교식 안벽 해석시 수평지반반력계수의 적용)

  • Park, See-Boum;Kim, Ji-Yong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1707-1711
    • /
    • 2008
  • Landing pier is connect from onshore to offshore with bridge type that a coast structure. The sub-structure is consisted of vertical or batter pile and combined reinforced concrete slab. These days useful design method of quay wall of landing pier type for pile foundation analysis abide by approximate depth of pile supported method, "Harbor and port design criterion, 2005 The ministry of land transport and maritime affairs". The approximate depth of pile supported is calculated two kind of method that one is assume to below depth of 1/$\beta$ from assumed submarine surface and other is 1st fixpoint depth by Chang(1937)'s theory. By this paper, FEM dynamic analysis of 3-dimensions was achieved that it has compared pile fixed end modeling with elastic spring modeling base on winkler theory.

  • PDF

Can finite element and closed-form solutions for laterally loaded piles be identical?

  • Sawant, Vishwas A.;Shukla, Sanjay Kumar
    • Structural Engineering and Mechanics
    • /
    • v.43 no.2
    • /
    • pp.239-251
    • /
    • 2012
  • The analysis of laterally loaded piles is generally carried out by idealizing the soil mass as Winkler springs, which is a crude approximation; however this approach gives reasonable results for many practical applications. For more precise analysis, the three- dimensional finite element analysis (FEA) is one of the best alternatives. The FEA uses the modulus of elasticity $E_s$ of soil, which can be determined in the laboratory by conducting suitable laboratory tests on undisturbed soil samples. Because of the different concepts and idealizations in these two approaches, the results are expected to vary significantly. In order to investigate this fact in detail, three-dimensional finite element analyses were carried out using different combinations of soil and pile characteristics. The FE results related to the pile deflections are compared with the closed-form solutions in which the modulus of subgrade reaction $k_s$ is evaluated using the well-known $k_s-E_s$ relationship. In view of the observed discrepancy between the FE results and the closed-form solutions, an improved relationship between the modulus of subgrade reaction and the elastic constants is proposed, so that the solutions from the closed-form equations and the FEA can be closer to each other.

Analysis of the lateral displacement to the Large Diameter Bored Pile based on the application of the Lateral coefficient of subgrade reaction (수평지반반력계수에 따른 대구경 현장타설말뚝의 수평변위 분석)

  • Chae, Young-Su;Kim, Nam-Ho;Bang, Ei-Souk;Lee, Kyoung-Jea
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.528-535
    • /
    • 2005
  • Using the case of design to the Large diameter Bored Pile, We showed the various method to estimate the Lateral coefficient of subgrade reaction and analyzed the lateral displacement behavior according to the characteristics of sub layer distribution. According to the study, Mutual relation to the N value and the soil modulus of deformation showed 400N to 800N to the fine grained soil and weathered soil. It showed simular tendancy with the proposed expression of Schmertmann. But Weathered rock was over estimated as 4,200N. $k_h$ to the sedimentory soil and weathered rock each showed these orded of Schmertmann-PMT-2,800N and Schmertmann-2,800N-PMT. As the factor($\alpha$) 4 was applied to the estimation in weathered rock, $k_h$ to the PMT was calculate as a big value. If the pile is long and the pile is surpported to the soil, Lateral displacement was in inverse proportion ratio to the value of $k_h$. But the case of shallow soil layer(early bedrock) and the short pile, Lateral displacement was affected by the behavior of socheted pile to the bedrock not by the upper soil layer.

  • PDF

Non-linear analysis of pile groups subjected to lateral loads using 'p-y' curve

  • Chore, H.S.;Ingle, R.K.;Sawant, V.A.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.1
    • /
    • pp.57-73
    • /
    • 2012
  • The paper presents the analysis of two groups of piles subjected to lateral loads incorporating the non-linear behaviour of soil. The finite element method is adopted for carrying out the parametric study of the pile groups. The pile is idealized as a one dimensional beam element, the pile cap as two dimensional plate elements and the soil as non-linear elastic springs using the p-y curves developed by Georgiadis et al. (1992). Two groups of piles, embedded in a cohesive soil, involving two and three piles in series and parallel arrangement thereof are considered. The response of the pile groups is found to be significantly affected by the parameters such as the spacing between the piles, the number of piles in a group and the orientation of the lateral load. The non-linear response of the system is, further, compared with the one by Chore et al. (2012) obtained by the analysis of a system to the present one, except that the soil is assumed to be linear elastic. From the comparison, it is observed that the non-linearity of soil is found to increase the top displacement of the pile group in the range of 66.4%-145.6%, while decreasing the fixed moments in the range of 2% to 20% and the positive moments in the range of 54% to 57%.