• Title/Summary/Keyword: Lateral Resistance

Search Result 567, Processing Time 0.022 seconds

Variation of Lateral Ballast Resistance due to Ballast Work (도상직업에 의한 도상 횡저항력 변화)

  • Lim Nam-Hyoung;Hwang Sung-Ho;Lee Jee-Ha;Yang Shin-Chu
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.961-966
    • /
    • 2004
  • Lateral ballast resistance is one of track components that causes much effects in track buckling. Ballast work or tie renewal if is done the ballast original lateral resistance lose. Reduction of lateral ballast resistance may significantly reduce the stability of track. Lateral ballast resistance that is decreased by these work increases slowly according to the increase of train passing tonnage. We measured the ballast lateral resistance in Okchon station neighborhood in Seoul-Busan line to grasp fluctuation phenomenon of ballast resistance by ballast class-2 work. The rate of decrease of ballast lateral resistance shortly after ballast work and the rate of increase by increase of train passing tonnage were investigated.

  • PDF

Evaluation of Ultimate Lateral Resistance for Single Pile Using Strain Wedge Model in Sand (모래지반에서 쐐기모델을 이용한 단말뚝의 극한수평저항력 산정)

  • Kim, Ji-Seong;Kang, Gi-Chun
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.12
    • /
    • pp.15-22
    • /
    • 2016
  • The magnitude of the lateral resistance that resists the lateral movement of the pile is controlled by the amount of the pile movement and the strength and stiffness of soil. In this paper, we proposed an equation which produces the ultimate lateral resistance of the laterally loaded single pile in sand using the strain wedge model of the soil deformation. The ultimate lateral resistance in strain wedge model is composed of earth pressure of wedge rear, the shear resistance on the side of the wedge, and the frictional resistance between pile and ground. The ultimate lateral resistance determined by the proposed equation was compared with the Ashour, F.D.M., field test in sand. As a result, the error of the proposed equation and Ashour theory, field test, F.D.M were respectively 1.03%, 0.40~3.32%, 6.02%.

Lateral Behavior Characteristics of Short Pile in Sands by Model Tests (모형실험에 의한 사질토 지반에서 단말뚝의 수평거동 특성)

  • Kim, Jin-Bok;Park, Jong-Un;Han, Dae-Hwan;Kwon, Oh-Kyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.366-376
    • /
    • 2008
  • The model tests of short pile with very small pile length/diameter(L/D) were performed in this paper. Varying the pile diameter, length, and the lateral loading point, the lateral resistance and behavior of very short pile were studied in this model tests. The experimental and analytical results are as follows. The lateral ultimate resistance of short pile in sands was the maximum at the point of h/L=0.75, regardless of pile length/diameter(L/D). As the pile diameter is larger, the lateral ultimate resistance of pile with L/D=1 decreases a little and the lateral resistance increases according to the ratio of pile length/diameter. As the lateral loads are acting on the pile, the displacement of pile head is maximum at the pile top of h/L=0, but minimum at the middle point of the pile. And if the loading point is under the middle of pile, the displacement of pile head occurs oposite in the loading direction, but its magnitude is very small.

  • PDF

Characteristics of the Lateral Resistance of Pile according to the Lateral Loading Rate in Dense Sand (조밀한 모래지반에서 수평재하속도에 따른 말뚝의 수평저항 특성)

  • Gichun Kang;Hyejeong Park;Seong-kyu Yun;Jiseong Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.3
    • /
    • pp.97-103
    • /
    • 2023
  • Recently, research on the lateral resistance of pile foundations has been actively conducted. In experimental studies on the lateral resistance of pile foundations, displacement control or load control methods are used. However, in the case of the displacement control method, the lateral resistance of the pile varies depending on the rate of the load applied to the pile. Therefore, this study seeks to determine the change in lateral resistance of pile foundations according to lateral loading rate through model experiments. The experimental results showed that the lateral resistance of the pile tended to decrease as the lateral loading rate applied to the pile head increased. In order to confirm this, a model experiment of the side change of the ground and pile according to the loading rate was additionally conducted. Through inverse analysis, the change in the depth of the rotation point according to the lateral loading rate was identified. Through the change in the lateral resistance of the pile foundation and the depth of the rotating point according to the lateral loading rate, it was proposed to test the loading rate within 1.5 mm/min during the lateral loading test of the pile.

Estimation of lateral pile resistance incorporating soil arching in pile-stabilized slopes

  • Neeraj, C.R.;Thiyyakkandi, Sudheesh
    • Geomechanics and Engineering
    • /
    • v.23 no.5
    • /
    • pp.481-491
    • /
    • 2020
  • Piles installed in row(s) are used as an effective technique to improve the stability of soil slopes. The analysis of pile-stabilized slopes require a reliable prediction of lateral resistance offered by the piles. In this work, an analytical solution is developed to estimate the lateral resistance offered by the stabilizing piles in sand and c - 𝜙 soil slopes considering soil arching phenomenon. The soil arching in both horizontal direction (between the neighboring piles) and vertical direction (in the active wedge in front of the pile row) are studied and their effects are incorporated in the proposed model. The shape of soil arch is assumed to be circular and principal stress trajectories are defined separately for both modes of arching. Experimental and numerical studies found in literature were used to validate the proposed method. A detailed parametric analysis was performed to study the influence of pile diameter, center-to-center spacing, slope angle and angle of internal friction on the lateral pile resistance.

Evaluation of Lateral Resistance for Tie-cell Wave-dissipating Block by Model Experiments (모형실험을 통한 타이셀소파블록 구조체의 수평저항력 평가)

  • Kim, Tae-Hyung;Kim, Jiseong;Choi, Ju-Sung;Kang, Gichun
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.12
    • /
    • pp.87-97
    • /
    • 2020
  • Recently, interest in Tie-cell wave-dissipating blocks that can compensate for the disadvantages of block-type breakwaters and provide economically effective design is increasing. Tie-cell wave-dissipating block has high activity resistance due to its structure in which each block is held together by a pile. In this study, through the laboratory model experiments, it was possible to confirm the increase in lateral resistance of the Tie-cell wave-dissipating blocks due to the penetration of the piles. The lateral resistance of the piles appeared almost constant regardless of the overburden load of the blocks. The lateral resistance shared by the piles changed depending on the increase or decrease in the lateral resistance of the friction between blocks. In the experiment in which two piles were penetrated, the overall lateral resistance was larger than the case a single pile was used, but the resistance behavior of the piles was different.

Experiment of Lateral Load Resistance of Dori-Directional Frame in Traditional Wood Structure System (전통목구조 시스템의 도리방향 골조의 횡저항 성능에 대한 실험)

  • Lee, Young-Wook;Hong, Sung-Gul;Kim, Nam-Hee;Jung, Sung-Jin;Hwang, Jong-Kook;Bae, Boung-Sun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.241-246
    • /
    • 2007
  • The capacity of a lateral load resistance of a joint with Jangbu-connection of Dori-directional frame in traditional wood structure system was studied, through experiments of 1/2 scaled and T-shaped 7 subassemblies of joint of Dori-directional frame for Deawoongjeon of Bongjungsa. From the experiment, it was shown that the capacity of a lateral load resistance was influenced by the vertical load confining joint and not influenced by the number of Chok and the depth of Changbang, And lateral load resistance mechanism is developed by the restraint between the vertical load and the contacting edge of column; if structure is pushed to the left, the top-right end of Pyeongju contacts with Changbang and left Changbang loses the contacts with Pyeongju and therefore only right Changbang can resist to lateral load.

  • PDF

Small Scale Modelling Experiments for Evaluating Lateral Resistance of Block-Type Breakwater I : Complex Blocks with Group Piles (블록식 방파제의 수평저항력 평가를 위한 실내모형실험 I : 무리말뚝으로 보강된 복합 블록의 거동)

  • Kang, Gichun;Kim, Jiseong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.95-103
    • /
    • 2021
  • While the existing pile foundation had the role of supporting the superstructure or reducing the earth pressure, recently there are cases where it is integrated with the superstructure to increase the lateral resistance. This study aims to evaluate a lateral resistance of block-type breakwaters with group piles by modelling experiments. The lateral resistance and bending moments of the piles by penetrated depths for the piles were measured. As a result, it was found that the lateral resistance increased as the depth of embedment of the group piles. In particular, the lateral resistance was 1.52 times greater in the case where the pile embedded up to the riprap layer than the case where the pile was embedded into the block. For the bending moment, the rear piles ware larger than the front piles, and the outside piles were larger than the inside piles. The location of the maximum bending moment in the ground was shown at the interface between the riprap layer and the natural ground.

An Comparative Study on the Method of Determining Allowable Horizontal Bearing Capacity of Piles (말뚝의 허용횡방향지지력 결정법의 비교연구)

  • Lee, Seung-Hyun;Han, Jin-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.267-274
    • /
    • 2021
  • Among several methods for determining the allowable lateral resistances of piles, the subgrade reaction method and ultimate lateral resistance method are generally used. To determine the effects of the soil conditions, pile head restraint conditions, and pile lengths on determining the allowable lateral resistances of piles, computations of the allowable lateral resistances of piles using the two methods were executed, and the computation results were compared. For piles in soft cohesive soil, the pile design is governed by the allowable lateral resistance of a pile from subgrade soil reaction method regardless of the pile head restraints conditions and pile lengths. The allowable lateral resistance of a pile from the ultimate lateral resistance governs the design as the undrained shear strength increases. Except for the case of a short pile, which is installed in loose granular soil, the allowable lateral resistance of a pile from ultimate lateral resistance governs the design of laterally loaded piles. According to this study, computation of the ultimate lateral resistance of a pile is needed, even though some opinions suggest that the design of a laterally loaded pile is satisfied only by the subgrade reaction method. The pile width barely influences the coefficient of horizontal subgrade reaction. Realistically, the effect of the pile width can be disregarded in the condition of common pile widths of 20~90cm.

Estimation of Ultimate Lateral Resistance for Lateral Loaded Short Piles Using CPT Results in Sand (CPT결과를 이용한 사질토지반에 관입된 짧은 단일말뚝의 극한수평단위지지력 산정)

  • Kim, Min-Kee;Hwang, Sung-Wook;Kyung, Du-Hyun;Lee, Jun-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1083-1086
    • /
    • 2008
  • In this study, Estimate solutions of ultimate lateral resistances for lateral loaded piles are proposed using cone penetration values, $q_c$ values, as CPT results. Cone penetration values, $q_c$ values measured on clean sand layers, are represented by factors for relative densities, axial stresses, and lateral stresses which are important on analysis of sandy soil layers. Also, these factors are same factors to consider existed estimations of ultimate lateral capacity. In this study, estimation of ultimate lateral capacity for lateral loaded piles using CPT results is proposed, and this estimation is verified by adequate analysis for effective reliability.

  • PDF