DOI QR코드

DOI QR Code

Small Scale Modelling Experiments for Evaluating Lateral Resistance of Block-Type Breakwater I : Complex Blocks with Group Piles

블록식 방파제의 수평저항력 평가를 위한 실내모형실험 I : 무리말뚝으로 보강된 복합 블록의 거동

  • Kang, Gichun (Department of Civil Engineering, College of Engineering, Gyeongsang National University) ;
  • Kim, Jiseong (Department of Cadastre & Civil Engineering, Vision College of Jeonju)
  • Received : 2021.11.22
  • Accepted : 2021.12.08
  • Published : 2021.12.31

Abstract

While the existing pile foundation had the role of supporting the superstructure or reducing the earth pressure, recently there are cases where it is integrated with the superstructure to increase the lateral resistance. This study aims to evaluate a lateral resistance of block-type breakwaters with group piles by modelling experiments. The lateral resistance and bending moments of the piles by penetrated depths for the piles were measured. As a result, it was found that the lateral resistance increased as the depth of embedment of the group piles. In particular, the lateral resistance was 1.52 times greater in the case where the pile embedded up to the riprap layer than the case where the pile was embedded into the block. For the bending moment, the rear piles ware larger than the front piles, and the outside piles were larger than the inside piles. The location of the maximum bending moment in the ground was shown at the interface between the riprap layer and the natural ground.

기존의 말뚝기초는 상부구조물을 지지하거나, 토압을 감소시키는 역할이었다면, 최근에는 상부구조물과 일체화되어 수평저항력을 높이는 사례들이 있다. 따라서, 본 연구는 여러 개의 말뚝으로 보강된 블록 형식의 방파제에 대해 실내모형실험을 수행하였고, 수평저항력을 평가하였다. 실험에서는 말뚝이 근입된 깊이를 변화시켜 말뚝의 수평저항력과 말뚝의 위치별 휨모멘트를 측정하였다. 그 결과 무리말뚝의 근입깊이가 깊어짐에 따라 수평저항력이 커짐을 알 수 있었다. 특히 사석층까지 무리말뚝이 관입된 경우가 블록내에 관입된 경우보다 수평저항력이 1.52배 크게 나타났다. 휨모멘트의 경우 후열말뚝이 전열말뚝보다 크게, 바깥쪽 말뚝이 안쪽 말뚝보다 크게 나타났다. 지반내에서 최대 휨모멘트의 발생 위치는 사석층과 원지반의 경계면에서 나타났다.

Keywords

Acknowledgement

This research was supported by funds of Vision College of Jeonju (2021). The authors acknowledge Dr. Junwan Kim for his supports conducting modeling experiments with us.

References

  1. Broms, B. B. (1965), "Design of Laterally Loaded Piles", Proc. ASCE, Vol.91, No.SM 3, pp.79-99.
  2. Davidson, H. L., Cass, P. G., Khilji, K. H. and Mcquade, P. V. (1982), "Laterally loaded drilled pier research", Report EL 2197, EPRI, pp.324.
  3. Goda, Y. (1973), "Study on design wave pressure on breakwater", Report of port and Harbor Res. Inst., Vol.12, No.3, pp.31-69.
  4. Hwang, W. K., Kim, T. H., Kim, D. S., Oh, M. and Park, J. Y. (2018), "Effect of Wave-Induced Seepage on the Stability of the Rubble Mound Breakwater", Journal of Korean Geotechnical Engineering, Vol.34, No.3, pp.13-27.
  5. Iai, S. (1989). "Similitude for Shaking Table Tests on Soil-Structure-Fluid Model in 1g Gravitational Field", Soil and Foundations, Vol.29, No.1, pp.105-118. https://doi.org/10.3208/sandf1972.29.105
  6. Kang, G., Kim, J., Kim, T. H., Lee, S. and Kim, J. (2021), "Lateral Resistance of Block Type Breakwater with Piles to Depth of Embdement", Journal of Korean Society of Coastal and Ocean Engineers, Vol.33, No.2, pp.65-72. https://doi.org/10.9765/KSCOE.2021.33.2.65
  7. Kim, B. I., Kang, H. H., Kim, H. J. and Han, S. J., (2019), "The Study on Improvement Methods for the Seismic Performance of Port Structures", Journal of Korean Geosynthetics Society, vol.18, No.4, pp.151-165.
  8. Kim, J. and Kang, G., (2018) "Ultimate Lateral Resistance of Quadrangle Array Piles Using the Strain Wedge Model on Soil Subgrade", Journal of Testing and Evaluation, Vol.46, No.6, pp.2239-2350.
  9. Kim, T. H., Kim, J., Choi, J. S. and Kang, G. (2020), "Evaluation of Lateral Resistance for Tie-cell Wave-dissipating Block by Model Experiments", Journal of The Korean Geotechnical Society, Vol.36, No.12, pp.87-97. https://doi.org/10.7843/KGS.2020.36.12.87
  10. Rollins, K. M., Peterson, K. T. and Weaver, T. J. (1998), "Lateral Load Behavior of Full-Scale Pile Group in Clay", Journal of Geotechnical and Geotechnical Engineering, ASCE, Vol.124, No.6, pp.468-478.