• Title/Summary/Keyword: Lateral Load System

Search Result 400, Processing Time 0.026 seconds

Prediction of Thermal Load Distribution and Temperature of the Superheater in a Tangentially Fired Boiler (접선 연소식 보일러의 최종 과열기 열부하 분포 및 튜브 온도 예측에 관한 연구)

  • Park, Ho-Young;Sea, Sang-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.7
    • /
    • pp.478-485
    • /
    • 2008
  • The extreme steam temperature deviation experienced in the superheater of a tangentially fired boiler can seriously affect its economic and safe operation. This temperature deviation is one of the main causes of boiler tube failures. The steam temperature deviation is mainly due to the thermal load deviation in the lateral direction of the superheater. The thermal load deviation consists of several causes. One of the causes is the non-uniform heat flow distribution of burnt gas on the superheater tube system. This distribution is very difficult to measure in situ using direct experimental techniques. So, we need thermal load model to estimate the tube temperature. In this paper, we propose a thermal load distribution model by using CFD analysis and plant data. We successfully predict the tube temperature and the steam flow rate in a final superheater system from the thermal load model and one dimensional heat-flow system analysis. The proposed model and analysis method would be valuable in preventing the frequent tube failure of the final superheater tubes.

Redundancy Evaluation of the Composite Two Steel Plate-Girder Bridges (강합성 플레이트 2-거더교의 여유도 평가)

  • Park, Yong-Myung;Joe, Woom-Do-Ji
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.611-620
    • /
    • 2006
  • The composite two plate-girder bridges are generally defined as a non-redundant load path structure because the bridge can collapse if one of the two girders is seriously damaged by a fatigue crack. In this paper, a numerical study on the evaluation of the after-fracture redundancy of the composite two-girder bridges was accomplished. The evaluation has been performed on the simple and three-span continuous bridges with I-section cross beams which serve as transverse bracing, and with or without the bottom lateral bracing system. The load carrying capacities of the intact and damaged bridges with or without lateral bracing were evaluated from material and geometric nonlinear analysis, respectively and the redundancy was evaluated for each case. It was acknowledged from the analytical results that both simple and continuous intact two-girder bridges have sufficient redundancy even without lateral bracing, but it takes an important role to improve the redundancy of damaged bridges.

Analytical investigation on lateral load responses of self-centering walls with distributed vertical dampers

  • Huang, Xiaogang;Zhou, Zhen;Zhu, Dongping
    • Structural Engineering and Mechanics
    • /
    • v.72 no.3
    • /
    • pp.355-366
    • /
    • 2019
  • Self-centering wall (SCW) is a resilient and sustainable structural system which incorporates unbonded posttensioning (PT) tendons to provide self-centering (SC) capacity along with supplementary dissipators to dissipate seismic energy. Hysteretic energy dissipators are usually placed at two sides of SCWs to facilitate ease of postearthquake examination and convenient replacement. To achieve a good prediction for the skeleton curve of the wall, this paper firstly developed an analytical investigation on lateral load responses of self-centering walls with distributed vertical dampers (VD-SCWs) using the concept of elastic theory. A simplified method for the calculation of limit state points is developed and validated by experimental results and can be used in the design of the system. Based on the analytical results, parametric analysis is conducted to investigate the influence of damper and tendon parameters on the performance of VD-SCWs. The results show that the proposed approach has a better prediction accuracy with less computational effects than the Perez method. As compared with previous experimental results, the proposed method achieves up to 60.1% additional accuracy at the effective linear limit (DLL) of SCWs. The base shear at point DLL is increased by 62.5% when the damper force is increased from 0kN to 80kN. The wall stiffness after point ELL is reduced by 69.5% when the tendon stiffness is reduced by 75.0%. The roof deformation at point LLP is reduced by 74.1% when the initial tendon stress is increased from $0.45f_{pu}$ to $0.65f_{pu}$.

Rating of A Plate Girder Bridge through Load Test (강거더교의 재하시험을 통한 내하력평가)

  • Juhn, Gui Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.1
    • /
    • pp.89-97
    • /
    • 1998
  • This paper presents the results of the load test performed on a steel plate girder bridge and suggests the procedure of bridge rating through the load test. In general the girder bridge resist the loads as a complex three-dimensional structural system. Therefore the test results are analyzed for the longitudinal and the transverse response characteristics. The bending moments based on the beam analysis are compared with the measured values for longitudinal response characteristics. The lateral load distribution characteristics are assessed based on the load test results for transverse response characteristics. Also the rating of the test bridge is performed by using the suggested rating procedure which considers the actual response characteristics of the bridge. The suggested procedure can be used for understanding of actual response characteristics and evaluating load carrying capacity of the steel plate girder bridge.

  • PDF

A Seismic Behavior of a 3-dimensional Irregular Setback Structure (3차원 비정형 Setback 구조물의 지진 거동)

  • 문성권
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.1
    • /
    • pp.105-113
    • /
    • 2000
  • Seismic behavior of 3-dimensional setback structures showing abrupt reductions of the floor size within the structure height and the effect of in-plane deformations of floor slabs on the seismic behavior of those structures are investigated. To find out general seismic behavior of 3-dimensional setback structures two parameters, level of setback(L/sub s/) and degree of setback(R/sub s/) are used. Analysis results obtained from forty eight setback structures show that a sudden change in story shear near setback level is occurred for irregular setback structures. The effect of in-plane deformation of floor slabs on the seismic behavior of setback structures is greatly influenced by the arrangement of lateral load resisting elements and it is more pronounced for frame-shear wall system showing large difference in stiffness among the lateral load resisting elements. The in-plane deformation of floor slabs results in reduced base shear, especially for FW-type structures with L/sub s/=1.0. Also, it brings about reduced story shear for the lateral load resisting element with shear wall and increase in story shear lot the lateral load resisting element without shear wall. The in-plane deformation of floor slabs at the base portion and/or tower portion due to difference in stiffness among the lateral load resisting elements brings about increment of floor displacements at all floor level.

  • PDF

Diagonal bracing of steel frames with multi-cable arrangements

  • Husem, Metin;Demir, Serhat;Park, Hong G.;Cosgun, Suleyman I.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.6
    • /
    • pp.1121-1137
    • /
    • 2016
  • A large number of structure in the world were build with poor seismic details, with or without any lateral load resisting system like concentrically braced frames and steel plate shear walls. These structures can reveal deteriorating hysteretic behaviors with stiffness and strength degradation. Therefore, seismic retrofitting of such structures for drift control has vital importance. In this study a retrofit methodology has been developed, which involves diagonal bracing of steel frames with different cable arrangements. In the experimental and numerical program 5 different lateral load resisting system were tested and results compared with each other. The results indicated that multi-cable arrangements suggested in this study showed stable ductile behavior without any sudden decrease in strength. Due to the usage of more than one diagonal cable, fracture of any cable did not significantly affect the overall strength and deformation capacity of the system. In cable braced systems damages concentrated in the boundary zones of the cables and beams. That is why boundary zone must have enough stiffness and strength to resist tension field action of cables.

Quasi-Static and Shaking Table Tests of Precast Concrete Structures Utilizing Clamped Mechanical Splice (가압고정 기계적이음을 활용한 프리캐스트 콘크리트 구조물의 준정적 및 진동대 실험)

  • Sung, Han Suk;Ahn, Seong Ryong;Park, Si Young;Kang, Thomas H.-K.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.37-47
    • /
    • 2023
  • A new clamped mechanical splice system was proposed to develop structural performance and constructability for precast concrete connections. The proposed mechanical splice resists external loading immediately after the engagement. The mechanical splices applicable for both large-scale rebars for plants and small-scale rebars for buildings were developed with the same design concept. Quasi-static lateral cyclic loading tests were conducted with reinforced and precast concrete members to verify the seismic performance. Also, shaking table tests with three types of seismic wave excitation, 1) random wave with white noise, 2) the 2016 Gyeongju earthquake, and 3) the 1999 Chi-Chi earthquake, were conducted to confirm the dynamic performance. All tests were performed with real-scale concrete specimens. Sensors measured the lateral load, acceleration, displacement, crack pattern, and secant system stiffness, and energy dissipation was determined by lateral load-displacement relation. As a result, the precast specimen provided the emulative performance with RC. In the shaking table tests, PC frames' maximum acceleration and displacement response were amplified 1.57 - 2.85 and 2.20 - 2.92 times compared to the ground motions. The precast specimens utilizing clamped mechanical splice showed ductile behavior with energy dissipation capacity against strong motion earthquakes.

Three-phase Load Flow using DistFlow Method (DistFlow Method를 이용한 삼상조류해석 알고리즘에 관한 연구)

  • Kwak, Do-Il;Kim, Tae-Eung;Kim, Jae-Eon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.43-45
    • /
    • 2000
  • Traditionally, load flows have been calculated using the Gauss-Seidel and Newton-Raphson Method. DistFlow Method which is proposed by Wu and Baran is superior to the other two methods because it does not require the admittance matrix calculation to optimize the distribution system. This paper introduces a new alternative algorithm to the DistFlow Method which is slow and complex to find solutions as the number of lateral and sublateral increases. The proposed load flow method can construct System Jacobian easily. We can minimize the off-diagonal elements of the branch Jacobian and submatrices in the System Jacobian. Simulation results show that progressive performances of the proposed algorithm.

  • PDF

Dynamic behavior of SRC columns with built-in cross-shaped steels subjected to lateral impact

  • Liu, Yanhua;Zeng, Lei;Liu, Changjun;Mo, Jinxu;Chen, Buqing
    • Structural Engineering and Mechanics
    • /
    • v.76 no.4
    • /
    • pp.465-477
    • /
    • 2020
  • This paper presents an investigation on the dynamic behavior of SRC columns with built-in cross-shaped steels under impact load. Seven 1/2 scaled SRC specimens were subjected to low-speed impact by a gravity drop hammer test system. Three main parameters, including the lateral impact height, the axial compression ratios and the stirrup spacing, were considered in the response analysis of the specimens. The failure mode, deformation, the absorbed energy of columns, as well as impact loads are discussed. The results are mainly characterized by bending-shear failure, meanwhile specimens can maintain an acceptable integrity. More than 33% of the input impact energy is dissipated, which demonstrates its excellent impact resistance. As the impact height increases, the flexural cracks and shear cracks observed on the surface of specimens were denser and wider. The recorded time-history of impact force and mid-span displacement confirmed the three stages of relative movement between the hammer and the column. Additionally, the displacements had a notable delay compared to the rapid changes observed in the measured impact load. The deflection of the mid-span did not exceed 5.90mm while the impact load reached peak value. The impact resistance of the specimen can be improved by proper design for stirrup ratios and increasing the axial load. However, the cracking and spalling of the concrete cover at the impact point was obvious with the increasing in stiffness.

Strengthening of hollow brick infill walls with perforated steel plates

  • Aykac, Sabahattin;Kalkan, Ilker;Seydanlioglu, Mahmut
    • Earthquakes and Structures
    • /
    • v.6 no.2
    • /
    • pp.181-199
    • /
    • 2014
  • The infill walls, whose contribution to the earthquake resistance of a structure is generally ignored due to their limited lateral rigidities, constitute a part of the lateral load bearing system of an RC frame structure. A common method for improving the earthquake behavior of RC frame structures is increasing the contribution of the infill walls to the overall lateral rigidity by strengthening them through different techniques. The present study investigates the influence of externally bonded perforated steel plates on the load capacities, rigidities, and ductilities of hollow brick infill walls. For this purpose, a reference (unstrengthened) and twelve strengthened specimens were subjected to monotonic diagonal compression. The experiments indicated that the spacing of the bolts, connecting the plates to the wall, have a more profound effect on the behavior of a brick wall compared to the thickness of the strengthening plates. Furthermore, an increase in the plate thickness was shown to result in a considerable improvement in the behavior of the wall only if the plates are connected to the wall with closely-spaced bolts. This strengthening technique was found to increase the energy absorption capacities of the walls between 4 and 14 times the capacity of the reference wall. The strengthened walls reached ultimate loads 30-160% greater than the reference wall and all strengthened walls remained intact till the end of the test.