• Title/Summary/Keyword: Lateral Force

Search Result 1,230, Processing Time 0.026 seconds

Occlusal Analysis of the Subjects with Chewing Side Preference Using the T-Scan II System (T-Scan II 시스템을 이용한 습관적 편측저작자들의 교합 분석)

  • Park, Eun-Hee;Kim, Mee-Eun;Kim, Ki-Suk
    • Journal of Oral Medicine and Pain
    • /
    • v.31 no.3
    • /
    • pp.245-254
    • /
    • 2006
  • While orofacial pain or various dental factors are generally considered as the primary cause of unilateral chewing tendency, there exist several studies indicating that dental factors did not affect the preferred chewing side. The aim of this study was to examine difference of occlusal scheme between the subjects with and without chewing side preference. The difference between the chewing and non-chewing sides in the unilateral chewing group was investigated as well. Computerized, T-Scan II system was used for occlusal analysis. 20 subjects for the unilateral chewing group (mean age of $25.25{\pm}2.84$ years) and 20 subjects for the bilateral chewing group (mean age of $27.00{\pm}5.07$ years) were selected by a questionnaire on presence or absence of chewing side preference and those with occlusal problem or pain and/or dysfunction of jaw were excluded. T-Scan recordings were obtained during maximum intercuspation and excursion movement. The number of contact points, relative occlusal force ratio between right and left sides, tooth sliding area and elapsed time throughout the maximum intercuspation were calculated. Elapsed time for excursion was also investigated. The results of this study shows that the unilateral chewing group had the smaller average tooth contact areas compared with those of the bilateral group (p<0.005). In the unilateral chewing group, the contact areas of non-chewing side are smaller than those of chewing side (p<0.005). The contact areas on their preferred sides were not significantly different with those of right or left side of the subjects without chewing side preference. There was no significant difference in the elapsed time during maximum intercuspation and lateral excursion, the sliding areas and relative of right-to-left occlusal force ratio between the two groups. From the results of this study, it is likely that individuals prefer chewing on the side with more contact areas for efficient chewing.

Analysis on Seismic Resistance Capacity of Hollow Concrete Block Reinforced Foundation Ground by Using Shaking Table Test (진동대 시험을 이용한 중공블록 보강 기초의 내진성능분석)

  • Shin, Eun-Chul;Lee, Yeun-Jeung;Yang, Tae Chul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.85-93
    • /
    • 2021
  • The seventy percentage of Korean Peninsular is covered by the mountainous area, and the depth of west sea and south sea is relatively shallow. Therefore, a large scale land reclamation from the sea has been implemented for the construction of industrial complex, residental area, and port and airport facilities. The common problem of reclaimed land is consisted of soft ground, and hence it has low load bearing capacity as well as excessive settlement upon loading on the ground surface. The hollow concrete block has been used to reinforce the loose and soft foundation soil where the medium-high apartment or one-story industrial building is being planned to be built. Recently the earthquakes with the magnitude of 4.0~5.0 have been occurred in the west coastal and southeast coastal areas. Lee (2019) reported the advantages of hollow concrete block reinforced shallow foundation through the static laboratory bearing capacity tests. In this study, the dynamic behavior of hollow concrete block reinforced sandy ground with filling the crushed stone in the hollow space has been investigated by the means of shaking table test with the size of shaking table 1000 mm × 1000 mm. Three types of seismic wave, that is, Ofunato, Hachinohe, Artificial, and two different accelerations (0.154 g, 0.22 g) were applied in the shaking table tests. The horizontal displacement of structure which is situated right above the hollow concrete block reinforced ground was measured by using the LVDT. The relative density of soil ground are varied with 45%, 65%, and 85%, respectively, to investigate the effectiveness of reinforcement by hollow block and measured the magnitude of lateral movement, and compared with the limit value of 0.015h (Building Earthquake Code, 2019). Based on the results of shaking table test for hollow concrete block reinforced sandy ground, honeycell type hollow block gives a large interlocking force due to the filling of crushed stone in the hollow space as well as a great interface friction force by the confining pressure and punching resistance along the inside and outside of hollow concrete block. All these factors are contributed to reduce the great amount of horizontal displacement during the shaking table test. Finally, hollow concrete block reinforced sandy ground for shallow foundation is provided an outstanding reinforced method for medium-high building irrespective of seismic wave and moderate accelerations.

Factors influencing the axes of anterior teeth during SWA on masse sliding retraction with orthodontic mini-implant anchorage: a finite element study (교정용 미니 임플랜트 고정원과 SWA on masse sliding retraction 시 전치부 치축 조절 요인에 관한 유한요소해석)

  • Jeong, Hye-Sim;Moon, Yoon-Shik;Cho, Young-Soo;Lim, Seung-Min;Sung, Sang-Jin
    • The korean journal of orthodontics
    • /
    • v.36 no.5
    • /
    • pp.339-348
    • /
    • 2006
  • Objective: With development of the skeletal anchorage system, orthodontic mini-implant (OMI) assisted on masse sliding retraction has become part of general orthodontic treatment. But compared to the emphasis on successful anchorage preparation, the control of anterior teeth axis has not been emphasized enough. Methods: A 3-D finite element Base model of maxillary dental arch and a Lingual tipping model with lingually inclined anterior teeth were constructed. To evaluate factors influencing the axis of anterior teeth when OMI was used as anchorage, models were simulated with 2 mm or 5 mm retraction hooks and/or by the addition of 4 mm of compensating curve (CC) on the main archwire. The stress distribution on the roots and a 25000 times enlarged axis graph were evaluated. Results: Intrusive component of retraction force directed postero-superiorly from the 2 mm height hook did not reduce the lingual tipping of anterior teeth. When hook height was increased to 5 mm, lateral incisor showed crown-labial and root-lingual torque and uncontrolled tipping of the canine was increased.4 mm of CC added to the main archwire also induced crown-labial and root-lingual torque of the lateral incisor but uncontrolled tipping of the canine was decreased. Lingual tipping model showed very similar results compared with the Base model. Conclusion: The results of this study showed that height of the hook and compensating curve on the main archwire can influence the axis of anterior teeth. These data can be used as guidelines for clinical application.

Changes of symphysis morphology after chincup treatment (이모장치 착용 후 하악 이부의 헝태변화)

  • Kang, Sun;Park, Dong-Cheol;Kim, Jong-Ghee
    • The korean journal of orthodontics
    • /
    • v.30 no.1 s.78
    • /
    • pp.33-41
    • /
    • 2000
  • Although it is well known that the chincup, used to correct a skeletal class III malocclusion in growing children, reduce the mandibular prognathism by arresting the growth of the mandibular length and rotating the mandible posteroinferiorly, the majority of the studies about chincup is focused on condylar head that plays an Important role in mandibular growth. The aim of this study was to evaluate the morphologic change of the mandibular symphysis where extraoral force is applied directly during chincup treatment. The data lot this study were obtained from lateral cephalometric radiographs of 62 growing children(chincup group:32, control group:30) with mixed dentition who had been accepted lot the orthodontic treatment at Chonbuk National University Dental Hospital. The results were as follows : 1. Symphysis height was increased both in chincup therapy group and control group during treatment. Symphysis depth was decreased or maintained the initial values in chin cup therapy group, whereas increased in control group. Posterior symphysis depth was decreased both in chin cup therapy group and control group, but anterior svmphysis detph was increased in control group, whereas decreased in chincup therapy group. 2. Chin depth and chin curvature were increased in control group, whereas maintained or decreased in chincup therapy group during treatment. Chin angle, menton ang1e and symphysis angle were decreased in control group, whereas increased in chincup therapy group. It suggested that bone deposition in pogonion area that occur normally with mandibular growth was supressed by direct contact of chincup. 3. When growing children wear chincup, symphysis morphology was maintained due to inhibition of forward growth at mandibular symphysis. It may be due to the suppression of bone deposition in anterior part of symphysis.

  • PDF

Stimulation of bone formation by direct electrical current in an orthopedically expanded suture in the rat (백서의 악정형적으로 확장된 봉합부에서 직류 전류 자극의 골형성 촉진에 관한 연구)

  • Uysal, Tancan;Amasyali, Mihri;Olmez, Huseyin;Karslioglu, Yildirim;Gunhan, Omer
    • The korean journal of orthodontics
    • /
    • v.40 no.2
    • /
    • pp.106-114
    • /
    • 2010
  • Objective: The aim of this experimental study was to evaluate the effects of direct electrical current stimulation (DECS) on bone regeneration in response to an expansion of the inter-premaxillary suture in the rat. Methods: Sixteen 50 - 60 days old Wistar male rats were separated into two equal groups (control and experimental). Both groups were subjected to expansion, and 30-gram of force was applied to the maxillary incisors with helical-spring. In the experimental group, two metallic-screws were placed at lateral parts of the maxillary segments. Electrodes were connected to the screws. The device was activated with current adjustment to measure $10{\mu}A$ continuously and the current was monitored daily during the expansion and early-retention phase. Bone regeneration in the sutural area was histomorphometrically evaluated including new-bone area (${\mu}m^2$), bone perimeter (${\mu}m$), feret's diameter (${\mu}m$) and newly formed bone (%) parameters. Kruskal-Wallis rank and Mann-Whitney U tests were used for statistical evaluation at p < 0.05 level. Results: Statistical analysis showed significant differences between groups for all investigated histomorphometric parameters. New bone area (p = 0.002), bone perimeter (p = 0.004), feret's diameter (p = 0.002) and newly formed bone percentage (p = 0.002) measurements were significantly higher in the experimental group than the control group. Bone histomorphometric measurements revealed that bone architecture in the DECS group was improved. Conclusions: The application of DECS to an orthopedically expanded inter-premaxillary suture area during the early retention phase stimulated the formation of new bone.

Regional load deflection rate of multiloop edgewise archwire (Multiloop edgewise arch wire의 부위별 하중변형률)

  • Kim, Byoung-Ho;Yang, Won-Sik
    • The korean journal of orthodontics
    • /
    • v.29 no.6 s.77
    • /
    • pp.673-688
    • /
    • 1999
  • This study was conducted in order to analyze the mechanical characteristics of multiloop edgewise archwire (MEAW). The purposes were 1) to compare load deflection rate (LDR) of MEAW with that of various other arch wires in the individual interbracket span, 2) to compare the wire stiffness in the interbracket span with that in the multi-L-loop region (the span from distal border of the bracket of the lateral incisor to the mesial border of the buccal tube of the second molar), and 3) to verify the experimental results with theoretically derived formula. The single L-loops of five different horizontal lengths and multi-L-loops for the upper and lower arches were made out of .$016\times.022$ permachrome stainless steel wire. Straight segment of plain stainless steel, TMA and NiTi wire of the same dimension were prepared. The LDR was measured using Instron model 4466 with the load cell of 50N capacity at cross head speed of 1.0mm/min, and maximum deflection of 1.0mm. Five specimens were tested under each experimental condition. The wire stiffness number for each interbracket region and multi-L-loop region was calculated from the LDR and the interbracket spans. By dividing the theoretical model of multi-L-loop into 35 linear segments, the energy stored in each segment was obtained. Then the LDR and wire stiffness of single L-loop and multi-L-loop were calculated and compared. The findings were as follows : 1) The average LDR of MEAW in the individual interbracket region was 1/1.53 of that of the NiTi,1/2.47 of TMA and 1/5.16 of the plain stainless steel wire. 2) The wire stiffness of MEAW in the multi-L-loop region was 1.53 times larger than that in the interbracket region, and the LDR was almost twice as large as that of NiTi in that region. 3) According to the theoretically derived equation, the wire stiffness of the single L-loop was lower than that of multi-L-loop. The results of this study suggest that MEAW has the unique mechanical Property which could allow individual tooth movement and transmit elastic force effectively through the entire arch wire.

  • PDF

Comparative Biomechanical Study of Stiffness on Ligamentous Attached Sites of Distal Femur - Experimental Laboratory Study on Cadaver Femora - (원위 대퇴골 인대 부착부의 강도 비교 - 사체의 대퇴골에 행한 실험적 연구 -)

  • Kwak, Ji-Hoon;Sim, Jae-Ang;Yang, Sang-Hoon;Kim, Dong-Hee;Lee, Beom-Koo
    • Journal of Korean Orthopaedic Sports Medicine
    • /
    • v.8 no.1
    • /
    • pp.26-32
    • /
    • 2009
  • Purpose: This study was performed to compare the strength of ligamentous attached sites of cadaveric distal femur and to obtain reliable biomechanical data to use in ligamentous reconstruction or augmentation. Materials and Methods: Fifteen cadaveric distal femurs were used for this study. After measuring the bone density, 5.0 mm cannulated screw (Experiment 1) or reconstructed porcine ligament (Experiment 2) was inserted into the each ligamentous attached sites of anterior cruciate ligament (ACL), posterior cruciate ligament (PCL), medial collateral ligament (MCL) and lateral collateral ligament (LCL). In experiment 2, reconstructed porcine graft was fixed with bioabsorbable screw in ligamentous insertion sites. And we measured the maximal pullout force of each ligamentous attached sites of cadaveric distal femur. Results: Average bone mineral density was $1.205{\pm}0.137\;g/cm^2$ in experiment 1, $1.236{\pm}0.089\;g/cm^2$ in experiment 2, which showed no statistically significant differences. In experiment 1, average pull-out strength of ACL, PCL, MCL and LCL group were $519.1{\pm}111.7$ N, $638.9{\pm}144.4$ N, $169.7{\pm}56.0$ N, $225.6{\pm}61.5$ N respectively. In experiment 2, the average pull-out strength were $310.6{\pm}31.0$ N, $379.9{\pm}47.4$ N, $104.0{\pm}14.4$ N, $131.5{\pm}21.9$ N respectively. In experiment 1, there was no significant difference between ACL and PCL group and between MCL and LCL group. However, the maximal pullout strength of MCL and LCL group were significantly lower than that of ACL and PCL group (p<0.01). Experiment 2 showed the same results of experiment 1. Conclusion: Because stiffness of MCL and LCL attached sites are much lower than that of ACL and PCL attached sites, we may consider augmented fixation in ligamentous reconstructions of MCL and LCL.

  • PDF

Three dimensional photoelastic study on the initial stress distributions of alveolar bone when retracted by lingual K-loop archwire (Lingual K-loop archwire를 이용한 발치공간 폐쇄시 초기응력 분포에 대한 3차원 광탄성학적 연구)

  • Byun, Bo-Ram;Kim, Sik-Sung;Son, Woo-Sung
    • The korean journal of orthodontics
    • /
    • v.32 no.5 s.94
    • /
    • pp.343-353
    • /
    • 2002
  • This study was designed to investigate the stress distribution of alveolar bone in case of on masse retraction with lingual K-loop archwire using the 3-dimensional photoelastic stress analysis followed by stress freezing process. Lingual K-loop archwire which had loop in 15mm height was used and activated by retraction force of 350gm per each side. The results were as follows 1. Central incisor : As the closer side to crown, the larger tensile stress was distributed at both mesial and labial surfaces and the larger compressive stress was distributed at distal surface. As the closer side to root apex, the larger compressive stress was distributed at lingual surface. The compressive stress was distributed at root apex. 2. Lateral incisor : The tensile stress was distributed at the coronal side of mesial surface. The compressive stress was distributed at distal surface. As the closer side to crown, the larger tensile stress was distributed at labial surface. The tensile stress was distributed at coronal side and the compressive stress was distributed at apical side of lingual surface. The compressive stress was distributed at root apex. 3. Canine The tensile stress was distributed at coronal side and the compressive stress was distributed at apical side of mesial surface. The tensile stress was distributed at distal surface. As the closer side to crown, the larger tensile stress was distributed at both mesial and distal surfaces. The compressive stress was distributed at root apex. 4. Second premolar : The tensile stress was distributed at mesial surface. The compressive stress was distributed at coronal side and the tensile stress was distributed at apical side of distal surface. The compressive stress was distributed at coronal side of buccal surface. As the closer side to crown, the larger tensile stress was distributed at lingual surface. The compressive stress was distributed at root apex. 5. First molar . As the closer side to crown, the larger tensile stress was distributed at both mesial and distal surfaces. No stress was distributed at buccal surface and palatal root apex. As the closer side to crown, the larger tensile stress was distributed at both lingual surfaces. The compressive stress was distributed a4 buccal root apexes. 6. Second molar The compressive stress was distributed at all root apexes. As the closer side to crown, the larger compressive stress was distributed at both mesial and lingual surfaces, and the larger tensile stress at both distal and buccal surfaces. Transverse bowing effect was observed in on-masse retraction with lingual K-loop archwire, however vertical towing effect was not. Rather, reverse vortical bowing effect was developed.

Finite element analysis of effectiveness of lever arm in lingual sliding mechanics (Lingual sliding mechanics의 lever arm 효과에 대한 유한요소분석)

  • Kim, Kyeong-Hee;Lee, Kee-Joon;Cha, Jung-Yul;Park, Young-Chel
    • The korean journal of orthodontics
    • /
    • v.41 no.5
    • /
    • pp.324-336
    • /
    • 2011
  • Objective: The aim of this study was to conduct three-dimensional finite element analysis of individual tooth displacement and stress distribution when a posterior retraction force of 200 g was applied at different positions of the retraction hook on the transpalatal arch (TPA) of a molar, and over different lengths of the lever arm on the maxillary anterior teeth in lingual orthodontics. Methods: A three-dimensional finite element model, including the entire upper dentition, periodontal ligaments, and alveolar bones, was constructed on the basis of a sample (Nissan Dental Product, Kyoto, Japan) survey of Asian adults. Individual movement of the incisal edge and root apex was estimated along the x-, y-, and z-coordinates to analyze tooth displacement and von Mises stress distribution. Results: When the length of the lever arm was 15 mm and 20 mm, the incisal edge and root apex of the anterior teeth was displaced lingually, with a maximum lingual displacement at the lever arm length of 20 mm. When the posterior retraction hook was on the root apex, the molars showed distal displacement. When the length of the lever arm was 20 mm, anterior extrusion was reduced and the crown of the canine displaced toward the buccal side, in which case, the retraction hook was on the edge, rather than at the center, of the TPA. Conclusions: The results of the analysis showed that when 6 anterior teeth were retracted posteriorly, lateral displacement of the canine and lingual displacement of the incisal edge and root apex of the anterior teeth occur without the extrusion of the anterior segment when the length of the lever arm is longer, and the posterior retraction hook is in the midpalatal area.

Structural Behavior Evaluation of NRC Beam-Column Connections (NRC 보-기둥 접합부의 구조적 거동 평가)

  • Jeon, Ji-Hwan;Lee, Sang-Yun;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.73-80
    • /
    • 2022
  • In this study, details of NRC beam-column connections were developed in which beam and columns pre-assembled in factories using steel angles were bolted on site. The developed joint details are NRC-J type and NRC-JD type. NRC-J type is a method of tensile joining with TS bolts to the side and lower surfaces of the side plate of the NRC column and the end plate of the NRC beam. NRC-JD type has a rigid joint with high-strength bolts between the NRC beam and the side of the NRC column for shear, and with lap splices of reinforcing bar penetrating the joint and the beam main reinforcement for bending. For the seismic performance evaluation of the joint, three specimens were tested: an NRC-J specimen and NRC-JD specimen with NRC beam-column joint details, and an RC-J specimen with RC beam-column joint detail. As a result of the repeated lateral load test, the final failure mode of all specimens was the bending fracture of the beam at the beam-column interface. Compared to the RC-J specimen, the maximum strength of the specimen by the positive force was 10.1% and 29.6% higher in the NRC-J specimen and the NRC-JD specimen, respectively. Both NRC joint details were evaluated to secure ductility of 0.03 rad or more, the minimum total inter-story displacement angle required for the composite intermediate moment frame according to the KDS standard (KDS 41 31 00). At the slope by relative storey displacemet of 5.7%, the NRC-J specimen and the NRC-JD specimen had about 34.8% and 61.1% greater cumulative energy dissipation capacity than the RC specimen. The experimental strength of the NRC beam-column connection was evaluated to be 30% to 53% greater than the theoretical strength according to the KDS standard formula, and the standard formula evaluated the joint performance as a safety side.