• Title/Summary/Keyword: Lateral Bearing Capacity

Search Result 165, Processing Time 0.019 seconds

Structural Load Bearing Capacity of Wall System Framed by Studs and Runners using Square Steel Tubes (각형강관을 이용한 스터드-런너 골조형 벽체시스템의 구조내력 성능평가)

  • Kim, Ho Soo;Hong, Seok Il;Lim, Young Do
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.3 s.76
    • /
    • pp.253-262
    • /
    • 2005
  • Because the framed wall system using steel studs and runners with square steel tubes as structural elements is reinforced by the horizontal members called runners, it has more strength and load bearing capacity than the steel house wall system. Also, this system improves adiabatic and sound insulation performance by filling up the autoclaved lightweight concrete. We need to evaluate load bearing capacity according to the axial load and lateral load in case this system is applied in the housing system with 3~5 stories through variations in intervals for the runners under the placement effect of autoclaved lightweight concrete. Therefore, this study seeks to analyze axial and shear behavior of the framed wall system according to the placement effect of autoclaved lightweight concrete, and to secure safety for the vertical and lateral loads.

A Numerical Study of Cantilever Retaining Wall Sliding Behavior due to Surcharge Loading Condition (과재하중 재하에 따른 역 T형 옹벽의 활동거동에 관한 수치해석)

  • Yoo, Nam-Jae;Lee, Myung-Woog;Park, Byung-Soo;Lee, Seung-Joo
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.205-212
    • /
    • 2001
  • This paper is experimental and numerical research about the sliding behavior of cantilever retaining walls resisting surcharge loads. In experimental research, centrifuge model tests at the lg and 40 g-level were performed by changing the location of model footing and its width. Bearing capacity of model footing and characteristics of load-settlement and load-lateral displacement of retaining wall were investigated. Test results of bearing capacity were compared with modified jarquio method, based on the limit equilibrium method with elasticity theory. For the numerical analysis, the commericially available program of FLAC was used by implementing the hyperbolic constitutive relationships to compare with test result about load-settlement and load-displacement of retaining wall, bearing capacity of strip footing.

  • PDF

Numerical analysis and horizontal bearing capacity of steel reinforced recycled concrete columns

  • Ma, Hui;Xue, Jianyang;Liu, Yunhe;Dong, Jing
    • Steel and Composite Structures
    • /
    • v.22 no.4
    • /
    • pp.797-820
    • /
    • 2016
  • This paper simulates the hysteretic behavior of steel reinforced recycled concrete (SRRC) columns under cyclic loads using OpenSees software. The effective fiber model and displacement-based beam-column element in OpenSees is applied to each SRRC columns. The Concrete01 material model for recycled aggregate concrete (RAC) and Steel02 material model is proposed to perform the numerical simulation of columns. The constitutive models of RAC, profile steel and rebars in columns were assigned to each fiber element. Based on the modelling method, the analytical models of SRRC columns are established. It shows that the calculated hysteresis loops of most SRRC columns agree well with the test curves. In addition, the parameter studies (i.e., strength grade of RAC, stirrups strength, steel strength and steel ratio) on seismic performance of SRRC columns were also investigated in detail by OpenSees. The calculation results of parameter analysis show that SRRC columns suffered from flexural failure has good seismic performance through the reasonable design. The ductility and bearing capacity of columns increases as the increasing magnitude of steel strength, steel ratio and stirrups strength. Although the bearing capacity of columns increases as the strength grade of RAC increases, the ductility and energy dissipation capacity decreases gradually. Based on the test and numerical results, the flexural failure mechanism of SRRC columns were analysed in detail. The computing theories of the normal section of bearing capacity for the eccentrically loaded columns were adopted to calculate the nominal bending strength of SRRC columns subjected to vertical axial force under lateral cyclic loads. The calculation formulas of horizontal bearing capacity for SRRC columns were proposed based on their nominal bending strength.

Evaluation of behavior of updated three-dimensional panel under lateral load in both independent and dependent modes

  • Rezaifar, Omid;Nik, Hamun Adeli;Ghohaki, Majid
    • Earthquakes and Structures
    • /
    • v.14 no.1
    • /
    • pp.11-20
    • /
    • 2018
  • Three-dimensional panels are one of the modern construction systems which can be placed in the category of industrial buildings. There have always been a lot of studies and efforts to identify the behavior of these panels and improve their capacity due to their earthquake resistance and high speed of performance. This study will provide a comparative evaluation of behavior of updated three-dimensional panel's structural components under lateral load in both independent and dependent modes. In fact, this study tries to simultaneously evaluate strengthening effect of three-dimensional panels and the effects of system state (independent, L-shaped and BOX shaped Walls) with reinforcement armatures with different angles on the three-dimensional panels. Overall, six independent wall model, L-shaped, roofed L-shaped, BOX-shaped walls with symmetric loading, BOX -shaped wall with asymmetrical loading and roofed BOX-shaped wall were built. Then the models are strengthened without strengthened reinforcement and with strengthened reinforcements with an angle of 30, 45 and 60 degrees. The applied lateral loading, is exerted by changing the location on the end wall. In BOX-shaped wall, in symmetric and asymmetric loading, the load bearing capacity will be increased about 200 and 50% respectively. Now, if strengthened, the load bearing capacity in symmetric and asymmetric loading will be increased 3.5 and 2 times respectively. The effective angle of placement of strengthened reinforcement in the independent wall is 45 and 60 degrees. But in BOX-shaped and L-shaped walls, the use of strengthened reinforcement 45 degrees is recommended.

Stress delivery mechanism of Top Bases (팽이기초의 하중전달 메커니즘)

  • Chung, Jin-Hyuck;Do, Jun-Ki;Lee, Song
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.430-440
    • /
    • 2009
  • Top-Base Foundation(TBF) was developed in Japan as a factory made concrete product. It is actively used in 6,000 sites by the end of 1980s in Japan and applied for a domestic patent in 1985. It is a shallow foundation whose effectiveness is proven by many relevant researchers and engineers. TBF was introduced to Korea in 1991 and has been applied mainly to architectural structures to date. Currently, the effectiveness in bearing capacity and settlement of TBF is being underestimated for civil engineering structures. Characteristics of Top-Base Foundation studied in Japan and Korea is known as follows: (1) as concrete part and crushed stone behave together, they perform the function of rigid mat; (2) the conical part and pile part of TBF disperses load by interaction with the crushed stone; (3) by preventing lateral strain and differential settlement on lower ground, it improves bearing capacity and constrains settlement at the same time. In Korea, it is used mostly in clayey soft grounds. The formula of bearing capacity and settlement of TBF suggested in Japan give the values of the underestimated. bearing capacity while its settlement is overestimated in comparison with the values measured from the field loading test. Therefore, in this study, the stress delivery mechanism of Top-Base Foundation developed in Japan and Floating Top Base developed in Korea is investigated through numerical analysis and laboratory model test.

  • PDF

Enhancement of in-plane load-bearing capacity of masonry walls by using interlocking units

  • Kayaalp, Fatma Birinci;Husem, Metin
    • Earthquakes and Structures
    • /
    • v.22 no.5
    • /
    • pp.475-485
    • /
    • 2022
  • This paper presents a comparative experimental study on structural behavior of the interlocking masonry walls under in-plane cyclic loading. The main purpose of this study is to increase lateral load-bearing capacities of masonry walls by using interlocking units. The interlocking units were designed by considering failure modes of masonry walls and produced using lightweight foamed concrete. To this end, three masonry walls which are hollow, fully grouted, and reinforced were constructed with interlocking units. Also, a traditional masonry brick wall was built for comparison reasons. The walls were tested under in-plane cyclic loading. Then, structural parameters of the walls such as lateral load bearing and total energy dissipation capacities, ductility, stiffness degradation as well as failure modes obtained from the tests were compared with each other. The results have shown that the walls with the interlocking units have better structural performance than traditional masonry brick walls and they may be used in the construction of low-rise masonry structures in rural areas to improve in-plane structural performance.

Load Carrying Capacity and Failure Mechanism of Geogrid Reinforced Stone Columns : Reduced-Scale Model Tests (지오그리드 보강 Stone Column의 파괴메카니즘 및 지지력 특성 - 축소모형실험을 통한 고찰)

  • Lee, Dae-Young;Song, Ah-Ran;Yoo, Chung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.121-129
    • /
    • 2006
  • Stone column is one of the ground improvement systems which is being used for accelerating consolidation and increasing bearing capacity for settlement sensitive structures like load embankments, bridge abutments, oil storage tanks etc. The effects of this method are enhancement of ground bearing capacity, reduction of settlement, prevention of liquefaction and prevention of lateral ground movement. Recently, geosynthetic reinforced (encased) stone column approach has been developed to improve its load carrying capacity through increasing confinement effect. Although such a concept has successfully been applied in practice, fundamentals of the method have not been fully explored. This paper presents the results of an investigation on the bearing capacity and failure mechanism of geogrid-encased stone column by model tests. The results of the analyses indicated improved bearing capacity of the geogrid reinforced stone column method over the conventional strone column method with no encasing.

Evaluation of Lateral Subgrade Reaction Coefficient Considering Empirical Equation and Horizontal Behavior Range of Large Diameter Drilled Shaft (경험식을 통한 대구경 현장타설말뚝에 대한 수평지반반력계수와 수평거동 영향범위의 평가)

  • Yang, Woo-Yeol;Hwang, Tae-Hyun;Kim, Bum-Joo;Park, Seong-Bak;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.2
    • /
    • pp.1-11
    • /
    • 2020
  • The lateral bearing characteristics of large diameter drilled shaft depend greatly on the stiffness of the pile, horizontal subgrade reaction of adjacent ground. In particular, the empirical evaluation results of the horizontal subgrade reaction coefficient which are widely used in pile design are very important factors in evaluating the lateral bearing capacity of drilled shaft because the difference in bearing capacity depends on the estimated result. Nevertheless, the evaluation of the horizontal subgrade reaction coefficient on the large diameter drilled shaft is insufficient. In addition, although the range of influence and the location of the maximum moment which is the weaken zone on the pile may be correlated and relationship of these are major consideration in determining the reinforced zone of drilled shaft, the previous studies have not been evaluated it. In this study, the field test and nonlinear analysis of large diameter drilled shaft were performed to evaluate the horizontal subgrade reaction coefficient and to investigate the relationship between the influence range 1/β of the pile and the location of the maximum moment zm. In the result, the lateral bearing capacity of drilled shaft showed a difference in results by about 190% according to the empirical equation on the horizontal subgrade reaction coefficient. And the relationship between the influence range of the pile and the location of the maximum moment was evaluated as a linear relationship depending on the soil density.

A Study on the Determination of Bearing Capacity of Polluted Soils with Various Concentrations (농도가 다른 오염지반의 지지력 결정에 관한 연구)

  • 안종필;박상범
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.57-69
    • /
    • 1999
  • This study investigates the existing theoretical backgrounds for bearing capacity determination according to the plasticity of soils when unsymmetrical surcharge is loaded on polluted soft soils. It also investigates the behavior of the displacement and bearing capacity by unsymmetrical surcharge on the Polluted soft soils. by comparing the analytical results and the actual measurements performed through the model test. Model tests were carried out as follows : soil tank, bearing frame and bearing plate are made for the test ; the water content in soil tank was kept constant while the contaminants in natural soils and polluted material were gradually increased ; unsymmetrical surcharge is increased at regular intervals and then the amounts of settlement, lateral displacement and upheaval are observed. In conclusion, the value of critical surcharge was expressed as $q_{ cr}= 2.78_{Cu}$ which was similar to those $Tschebotarioff(q_{cr}=3.0_{Cu)$ and $Meyerhof(q_{cr}=(B/2H+\pi/2_{Cu})$ had proposed. The value of ultimate capacity was expressed as $q_{ult}=4.84_{Cu}$ which was similar to that of Prandtl.

  • PDF

Estimation of Bearing Capacity for In-Situ Top-Base Method by Field Experimental Plate Load Test (현장평판재하시험에 의한 현장타설형 팽이말뚝기초의 지지력산정)

  • Shin, Eun-Chul;Ahn, Min-Hye
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • The problems like a deterioration of loading bearing capacity, an exaggeration of settlement and lateral deformation are able to be generated, meanwhile structures are built in soft ground. Top-Base method is belonged to a rigidity mat foundation method which is used to surface treatment of soft ground. This method makes an effect to increase the bearing capacity of foundation using friction force, and prevent the differential settlement. Further more, the In-Situ Top-Base method has advantages in the phase of economic effect by reduction of the construction cost and offers an expediency on construction comparing with precast products. This paper presents the way of the estimation of bearing capacity for In-Situ Top-Base method through field plate load test in soft ground. It utilizes the results to a future design by analyzing the properties in the existing study and designs through these analysis and calculating the top-base method's reasonable range.