교통수요예측 과정 중 수단선택과정은 적용시 매우 복잡하여, 선택자의 특성을 이해하기도 매우 까다로운 과정이다. 일반적으로 수단 선택시 선택자의 사회경제적인 요소 외에도 심리적인 요인이나 특성들도 중요한 영향을 미치는 것으로 알려져 있다. 따라서, 심리적인 요인이나 특정한 선호도를 선택모형 상에서 적용할 수 있는 방법론에 대한 활발한 연구가 진행되고 있으며, 이러한 연구 중에서 잠재계층분석(Latent Class Analysis)는 이론적으로 매우 가능성이 있는 접근 방법으로 인식되고 있다. 본 연구에서는 심리적인 요인과 특성들이 수단선택에 미치는 영향을 분석하기 위하여 잠재계층분석(latent class cluster analysis)을 실시하여 계층을 분리하였다. 또한, 계층별로 나타나는 수단선택모형과 잠재 계층을 고려하지 않은 수단선택모형을 비교하여 잠재계층의 수단 선택 행태가 각기 다름을 보이고자 한다. 본 연구는 한강 수상교통 도입에 대한 일반 시민의 선호도 조사와 SP자료를 바탕으로 분석되었으며, 잠재계층분석은 잠재 선호를 고려할 수 있는 가능성 높은 접근임을 보였다.
Communications for Statistical Applications and Methods
/
제24권2호
/
pp.173-191
/
2017
This study develops a new type of latent class analysis (LCA) in order to explain the associations between one latent variable and several other categorical latent variables. Our model postulates that the prevalence of the latent variable of interest is affected by another latent variable composed of other several latent variables. For the parameter estimation, we propose deterministic annealing EM (DAEM) to deal with local maxima problem in the proposed model. We perform simulation study to demonstrate how DAEM can find the set of parameter estimates at the global maximum of the likelihood over the repeated samples. We apply the proposed LCA model in an investigation of the effect of and joint patterns for drug-using behavior to violent behavior among US high school male students using data from the Youth Risk Behavior Surveillance System 2015. Considering the age of male adolescents as a covariate influencing violent behavior, we identified three classes of violent behavior and three classes of drug-using behavior. We also discovered that the prevalence of violent behavior is affected by the type of drug used for drug-using behavior.
최근 많은 연구자와 실무자들이 모집단에 내재해 있는 여러 다른 그룹(class, segment)간의 이질성을 밝혀내고 객체들을 그룹별로 세분화하는 방법 중 하나로 잠재그룹 모델(Latent class model)을 고려하고 있다. 이 논문에서는 2000년도에 국립 암 센터에 접수된 한국 내 연령별 전립선암 사망자수 자료를 기반으로, 잠재그룹 포아송 모형을 이용하여 전립선암 환자의 연령에 따른 그룹화를 시도한다. 최우추정법 등 고전적 추론방법의 한계를 극복하기 위하여 Markov Chain Monte Carlo (MCMC) 방법을 도구로 한 베이지안 추정 방법을 제안한다. 제안된 베이지안 방법의 장점은 용이한 모수추정과 추정오차의 제공, 그리고 각 객체의 소속그룹의 판정과 이에 따르는 오차, 즉, 객체의 각 군집에 속할 확률, 도 구할 수 있다는 것이다. 또한 주어진 자료들에 대해 가장 적합한 그룹의 수를 결정하는 방법을 제시하여 그룹의 수나 세분화의 근거를 사전에 제공하지 않아도 자료가 주는 정보로부터 이들을 자동으로 결정하는 방법을 제시한다.
본 연구는 교사의 수학적 신념이 학생의 수학적 신념에 주는 영향을 잠재집단회귀모델(Latent Class Regression Model; LCRM)을 통해 분석하였다. 분석을 위해 본 연구는 잠재집단분석(Latent Class Analysis; LCA)을 통해 교사 60명과 그 교사에게 배우는 학생 1850명의 수학적 신념을 각각 분류한 강성권, 홍진곤(2020)의 연구결과를 활용하였다. 분석결과, '수학의 본질'에 대한 교사의 신념은 학생의 '수학교과', '수학문제해결', '수학학습' 신념에 영향을 주었다. 또한, '수학의 교수'와 '수학적 능력'에 관한 교사의 신념은 학생의 '수학교과', '수학문제해결', '자아개념' 신념에 영향을 주었다. 이를 통해 본 연구는 교사의 수학적 신념이 학생의 수학적 신념에 실질적인 영향을 끼친다는 것을 통계적으로 실증하였다. 이러한 연구결과는 교사들의 연수와 관련한 목표와 내용의 설정에 도움을 줄 수 있을 것이다.
As movie demands become more and more diversified, it is necessary for movie related firms to segment a whole heterogeneous market into a number of small homogeneous markets in order to identify the specific needs of consumer groups. Relevant market segmentation helps them to develop valuable offer to target segments through effective marketing planning. In this article, we introduce various segmentation methods and compare their advantages and disadvantages. In particular, we analyze "2009~2010 consumer survey data of Korean Film Industry" by using Latent Class Analysis(LCA), a statistical segmentation method which identifies exclusive set of latent classes based on consumers' responses to an observed categorical and numerical variables. It is applied PROC LCA, a new SAS procedure for conducting LCA and finally get the result of 11 distinctive clusters showing unique characteristics on their buying behaviors.
The electronic commerce site (EC site) has become an important marketing channel where consumers can purchase many kinds of products; their access logs, including purchase records and browsing histories, are saved in the EC sites' databases. These log data can be utilized for the purpose of web marketing. The customers who purchase many product items are good customers, whereas the other customers, who do not purchase many items, must not be good customers even if they browse many items. If the attributes of good customers and those of other customers are clarified, such information is valuable as input for making a new marketing strategy. Regarding the product items, the characteristics of good items that are bought by many users are valuable information. It is necessary to construct a method to efficiently analyze such characteristics. This paper proposes a new latent class model to analyze both purchasing and browsing histories to make latent item and user clusters. By applying the proposal, an example of data analysis on an EC site is demonstrated. Through the clusters obtained by the proposed latent class model and the classification rule by the decision tree model, new findings are extracted from the data of purchasing and browsing histories.
This paper addresses for the first time the use of complete data information criteria in unsupervised learning of the Naive-Bayes model. A Monte Carlo study sets a large experimental design to assess these criteria, unusual in the Bayesian network literature. The simulation results show that complete data information criteria underperforms the Bayesian information criterion (BIC) for these Bayesian networks.
This study proposes a two-stage hybrid classification model for crop classification using multi-temporal remote sensing images; the model combines feature embedding by using an autoencoder (AE) with a convolutional neural network (CNN) classifier to fully utilize features including informative temporal and spatial signatures. Long short-term memory (LSTM)-based AE (LAE) is fine-tuned using class label information to extract latent features that contain less noise and useful temporal signatures. The CNN classifier is then applied to effectively account for the spatial characteristics of the extracted latent features. A crop classification experiment with multi-temporal unmanned aerial vehicle images is conducted to illustrate the potential application of the proposed hybrid model. The classification performance of the proposed model is compared with various combinations of conventional deep learning models (CNN, LSTM, and convolutional LSTM) and different inputs (original multi-temporal images and features from stacked AE). From the crop classification experiment, the best classification accuracy was achieved by the proposed model that utilized the latent features by fine-tuned LAE as input for the CNN classifier. The latent features that contain useful temporal signatures and are less noisy could increase the class separability between crops with similar spectral signatures, thereby leading to superior classification accuracy. The experimental results demonstrate the importance of effective feature extraction and the potential of the proposed classification model for crop classification using multi-temporal remote sensing images.
본 연구는 중학생들의 수학 흥미와 성취도의 종단적인 변화 양상을 알아보기 위해 경기교육종단연구 4-6차년도 데이터를 분석하였다. 다변량 성장혼합모형을 이용하여 분석한 결과 학생들의 수학 흥미와 성취도의 변화 양상에 이질적인 특성이 존재함을 확인하였고, 종단적인 변화 양상에 따라 학생들을 4개의 잠재집단으로 구분하였다. 학생들은 흥미와 성취도가 모두 낮은 저수준 유형, 모두 높은 고수준 유형, 학년이 올라감에 따라 증가하는 중수준-증가 유형, 학년이 올라감에 따라 감소하는 중수준-감소 유형으로 구분되었으며, 유형마다 흥미와 성취도의 종단적인 변화 양상이 다르게 나타나는 것을 확인하였다. 또한, 다변량 성장혼합모형의 초기값과 기울기 사이의 상관관계를 분석한 결과, 수학 흥미와 성취도는 초기값뿐 아니라 변화율에 있어서도 서로 긍정적인 영향이 있는 것으로 나타났다. 잠재집단의 결정에 영향을 미치는 요인을 개인, 수업방식, 가정 변인으로 나누어 그 영향력을 살펴보았고, 학생의 교육포부와 사교육 시간은 수학 흥미 및 성취도에 긍정적인 영향을 미치며 선행학습의 경우 그 정도에 따라 영향력이 달라지는 양상을 확인하였다. 학생이 인식한 수업방식의 경우, 교수자 중심 수업은 흥미와 성취도가 높은 집단에 속할 확률을 높이고, 학습자 중심 수업은 흥미와 성취도가 낮은 집단에 속할 확률을 높이는 것으로 나타났다. 본 연구는 다변량 성장혼합모형을 통해 수학교육에서 흥미와 성취도를 비롯한 다양한 특성에 대한 학생들의 변화 양상을 분석하는 새로운 방법을 제시하였다는 점에서 의의가 있다.
무작위 통제시험에서와 달리, 관찰연구에서는 편향되지 않은 인과관계를 추론하기 위한 통계적 전략이 필요하다. 최근 잠재범주분석(latent class analysis; LCA)에서 처치의 평균인과효과(average causal effect; ACE)를 추정하기 위한 새로운 방법들이 제안되었으나 이러한 방법들은 실제 데이터를 분석하는 응용 연구에 초점이 맞춰있다. 따라서 ACE의 참값을 알 수 없어 추정 방법의 성능을 평가하는 데 한계가 있다. 본 연구에서는 Park과 Chung(2014)이 제안한 방법을 개선하여, 다항범주형 처치변수가 잠재변수인 상황에서 다항범주형 결과변수에 미치는 인과효과 추정방법을 제안하고 처치변수와 결과변수가 잠재변수 또는 관측변수를 포함하는 여러 상황에서 본 연구가 제안한 인과효과 추정방법의 성능을 모의실험연구를 통하여 평가하고자 한다. 더불어 'National Longitudinal Study of Adolescents Health'자료를 사용하여 미국 여성 청소년 성장과 약물사용에 대한 인과효과를 추론하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.