• 제목/요약/키워드: Latent Class Model

검색결과 72건 처리시간 0.022초

잠재계층분석에 따른 수단선택모형비교분석 (Latent Class Analysis for Mode Choice Behavior)

  • 배윤경;정진혁;김형진
    • 대한교통학회지
    • /
    • 제28권3호
    • /
    • pp.99-107
    • /
    • 2010
  • 교통수요예측 과정 중 수단선택과정은 적용시 매우 복잡하여, 선택자의 특성을 이해하기도 매우 까다로운 과정이다. 일반적으로 수단 선택시 선택자의 사회경제적인 요소 외에도 심리적인 요인이나 특성들도 중요한 영향을 미치는 것으로 알려져 있다. 따라서, 심리적인 요인이나 특정한 선호도를 선택모형 상에서 적용할 수 있는 방법론에 대한 활발한 연구가 진행되고 있으며, 이러한 연구 중에서 잠재계층분석(Latent Class Analysis)는 이론적으로 매우 가능성이 있는 접근 방법으로 인식되고 있다. 본 연구에서는 심리적인 요인과 특성들이 수단선택에 미치는 영향을 분석하기 위하여 잠재계층분석(latent class cluster analysis)을 실시하여 계층을 분리하였다. 또한, 계층별로 나타나는 수단선택모형과 잠재 계층을 고려하지 않은 수단선택모형을 비교하여 잠재계층의 수단 선택 행태가 각기 다름을 보이고자 한다. 본 연구는 한강 수상교통 도입에 대한 일반 시민의 선호도 조사와 SP자료를 바탕으로 분석되었으며, 잠재계층분석은 잠재 선호를 고려할 수 있는 가능성 높은 접근임을 보였다.

Latent class analysis with multiple latent group variables

  • Lee, Jung Wun;Chung, Hwan
    • Communications for Statistical Applications and Methods
    • /
    • 제24권2호
    • /
    • pp.173-191
    • /
    • 2017
  • This study develops a new type of latent class analysis (LCA) in order to explain the associations between one latent variable and several other categorical latent variables. Our model postulates that the prevalence of the latent variable of interest is affected by another latent variable composed of other several latent variables. For the parameter estimation, we propose deterministic annealing EM (DAEM) to deal with local maxima problem in the proposed model. We perform simulation study to demonstrate how DAEM can find the set of parameter estimates at the global maximum of the likelihood over the repeated samples. We apply the proposed LCA model in an investigation of the effect of and joint patterns for drug-using behavior to violent behavior among US high school male students using data from the Youth Risk Behavior Surveillance System 2015. Considering the age of male adolescents as a covariate influencing violent behavior, we identified three classes of violent behavior and three classes of drug-using behavior. We also discovered that the prevalence of violent behavior is affected by the type of drug used for drug-using behavior.

잠재그룹 포아송 모형을 이용한 전립선암 환자의 베이지안 그룹화 (Bayesian Clustering of Prostate Cancer Patients by Using a Latent Class Poisson Model)

  • 오만숙
    • 응용통계연구
    • /
    • 제18권1호
    • /
    • pp.1-13
    • /
    • 2005
  • 최근 많은 연구자와 실무자들이 모집단에 내재해 있는 여러 다른 그룹(class, segment)간의 이질성을 밝혀내고 객체들을 그룹별로 세분화하는 방법 중 하나로 잠재그룹 모델(Latent class model)을 고려하고 있다. 이 논문에서는 2000년도에 국립 암 센터에 접수된 한국 내 연령별 전립선암 사망자수 자료를 기반으로, 잠재그룹 포아송 모형을 이용하여 전립선암 환자의 연령에 따른 그룹화를 시도한다. 최우추정법 등 고전적 추론방법의 한계를 극복하기 위하여 Markov Chain Monte Carlo (MCMC) 방법을 도구로 한 베이지안 추정 방법을 제안한다. 제안된 베이지안 방법의 장점은 용이한 모수추정과 추정오차의 제공, 그리고 각 객체의 소속그룹의 판정과 이에 따르는 오차, 즉, 객체의 각 군집에 속할 확률, 도 구할 수 있다는 것이다. 또한 주어진 자료들에 대해 가장 적합한 그룹의 수를 결정하는 방법을 제시하여 그룹의 수나 세분화의 근거를 사전에 제공하지 않아도 자료가 주는 정보로부터 이들을 자동으로 결정하는 방법을 제시한다.

잠재집단회귀모델(LCRM)을 통한 학생의 수학적 신념에 대한 교사의 수학적 신념 영향분석 (Analysis of the Effect in Mathematics Teachers Beliefs on their Students Beliefs by Latent Class Regression Model)

  • 강성권;홍진곤
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제34권4호
    • /
    • pp.485-506
    • /
    • 2020
  • 본 연구는 교사의 수학적 신념이 학생의 수학적 신념에 주는 영향을 잠재집단회귀모델(Latent Class Regression Model; LCRM)을 통해 분석하였다. 분석을 위해 본 연구는 잠재집단분석(Latent Class Analysis; LCA)을 통해 교사 60명과 그 교사에게 배우는 학생 1850명의 수학적 신념을 각각 분류한 강성권, 홍진곤(2020)의 연구결과를 활용하였다. 분석결과, '수학의 본질'에 대한 교사의 신념은 학생의 '수학교과', '수학문제해결', '수학학습' 신념에 영향을 주었다. 또한, '수학의 교수'와 '수학적 능력'에 관한 교사의 신념은 학생의 '수학교과', '수학문제해결', '자아개념' 신념에 영향을 주었다. 이를 통해 본 연구는 교사의 수학적 신념이 학생의 수학적 신념에 실질적인 영향을 끼친다는 것을 통계적으로 실증하였다. 이러한 연구결과는 교사들의 연수와 관련한 목표와 내용의 설정에 도움을 줄 수 있을 것이다.

잠재계층분석기법(Latent Class Analysis)을 활용한 영화 소비자 세분화에 관한 연구 (Segmentation of Movie Consumption : An Application of Latent Class Analysis to Korean Film Industry)

  • 구교령;이장혁
    • 한국경영과학회지
    • /
    • 제36권4호
    • /
    • pp.161-184
    • /
    • 2011
  • As movie demands become more and more diversified, it is necessary for movie related firms to segment a whole heterogeneous market into a number of small homogeneous markets in order to identify the specific needs of consumer groups. Relevant market segmentation helps them to develop valuable offer to target segments through effective marketing planning. In this article, we introduce various segmentation methods and compare their advantages and disadvantages. In particular, we analyze "2009~2010 consumer survey data of Korean Film Industry" by using Latent Class Analysis(LCA), a statistical segmentation method which identifies exclusive set of latent classes based on consumers' responses to an observed categorical and numerical variables. It is applied PROC LCA, a new SAS procedure for conducting LCA and finally get the result of 11 distinctive clusters showing unique characteristics on their buying behaviors.

A New Latent Class Model for Analysis of Purchasing and Browsing Histories on EC Sites

  • Goto, Masayuki;Mikawa, Kenta;Hirasawa, Shigeichi;Kobayashi, Manabu;Suko, Tota;Horii, Shunsuke
    • Industrial Engineering and Management Systems
    • /
    • 제14권4호
    • /
    • pp.335-346
    • /
    • 2015
  • The electronic commerce site (EC site) has become an important marketing channel where consumers can purchase many kinds of products; their access logs, including purchase records and browsing histories, are saved in the EC sites' databases. These log data can be utilized for the purpose of web marketing. The customers who purchase many product items are good customers, whereas the other customers, who do not purchase many items, must not be good customers even if they browse many items. If the attributes of good customers and those of other customers are clarified, such information is valuable as input for making a new marketing strategy. Regarding the product items, the characteristics of good items that are bought by many users are valuable information. It is necessary to construct a method to efficiently analyze such characteristics. This paper proposes a new latent class model to analyze both purchasing and browsing histories to make latent item and user clusters. By applying the proposal, an example of data analysis on an EC site is demonstrated. Through the clusters obtained by the proposed latent class model and the classification rule by the decision tree model, new findings are extracted from the data of purchasing and browsing histories.

PERFORMANCE EVALUATION OF INFORMATION CRITERIA FOR THE NAIVE-BAYES MODEL IN THE CASE OF LATENT CLASS ANALYSIS: A MONTE CARLO STUDY

  • Dias, Jose G.
    • Journal of the Korean Statistical Society
    • /
    • 제36권3호
    • /
    • pp.435-445
    • /
    • 2007
  • This paper addresses for the first time the use of complete data information criteria in unsupervised learning of the Naive-Bayes model. A Monte Carlo study sets a large experimental design to assess these criteria, unusual in the Bayesian network literature. The simulation results show that complete data information criteria underperforms the Bayesian information criterion (BIC) for these Bayesian networks.

Two-stage Deep Learning Model with LSTM-based Autoencoder and CNN for Crop Classification Using Multi-temporal Remote Sensing Images

  • Kwak, Geun-Ho;Park, No-Wook
    • 대한원격탐사학회지
    • /
    • 제37권4호
    • /
    • pp.719-731
    • /
    • 2021
  • This study proposes a two-stage hybrid classification model for crop classification using multi-temporal remote sensing images; the model combines feature embedding by using an autoencoder (AE) with a convolutional neural network (CNN) classifier to fully utilize features including informative temporal and spatial signatures. Long short-term memory (LSTM)-based AE (LAE) is fine-tuned using class label information to extract latent features that contain less noise and useful temporal signatures. The CNN classifier is then applied to effectively account for the spatial characteristics of the extracted latent features. A crop classification experiment with multi-temporal unmanned aerial vehicle images is conducted to illustrate the potential application of the proposed hybrid model. The classification performance of the proposed model is compared with various combinations of conventional deep learning models (CNN, LSTM, and convolutional LSTM) and different inputs (original multi-temporal images and features from stacked AE). From the crop classification experiment, the best classification accuracy was achieved by the proposed model that utilized the latent features by fine-tuned LAE as input for the CNN classifier. The latent features that contain useful temporal signatures and are less noisy could increase the class separability between crops with similar spectral signatures, thereby leading to superior classification accuracy. The experimental results demonstrate the importance of effective feature extraction and the potential of the proposed classification model for crop classification using multi-temporal remote sensing images.

중학생들의 수학 흥미와 성취도의 종단적 변화에 따른 잠재집단 분류 및 영향요인 탐색: 다변량 성장혼합모형을 이용하여 (Classification of latent classes and analysis of influencing factors on longitudinal changes in middle school students' mathematics interest and achievement: Using multivariate growth mixture model)

  • 김래영;한수연
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제63권1호
    • /
    • pp.19-33
    • /
    • 2024
  • 본 연구는 중학생들의 수학 흥미와 성취도의 종단적인 변화 양상을 알아보기 위해 경기교육종단연구 4-6차년도 데이터를 분석하였다. 다변량 성장혼합모형을 이용하여 분석한 결과 학생들의 수학 흥미와 성취도의 변화 양상에 이질적인 특성이 존재함을 확인하였고, 종단적인 변화 양상에 따라 학생들을 4개의 잠재집단으로 구분하였다. 학생들은 흥미와 성취도가 모두 낮은 저수준 유형, 모두 높은 고수준 유형, 학년이 올라감에 따라 증가하는 중수준-증가 유형, 학년이 올라감에 따라 감소하는 중수준-감소 유형으로 구분되었으며, 유형마다 흥미와 성취도의 종단적인 변화 양상이 다르게 나타나는 것을 확인하였다. 또한, 다변량 성장혼합모형의 초기값과 기울기 사이의 상관관계를 분석한 결과, 수학 흥미와 성취도는 초기값뿐 아니라 변화율에 있어서도 서로 긍정적인 영향이 있는 것으로 나타났다. 잠재집단의 결정에 영향을 미치는 요인을 개인, 수업방식, 가정 변인으로 나누어 그 영향력을 살펴보았고, 학생의 교육포부와 사교육 시간은 수학 흥미 및 성취도에 긍정적인 영향을 미치며 선행학습의 경우 그 정도에 따라 영향력이 달라지는 양상을 확인하였다. 학생이 인식한 수업방식의 경우, 교수자 중심 수업은 흥미와 성취도가 높은 집단에 속할 확률을 높이고, 학습자 중심 수업은 흥미와 성취도가 낮은 집단에 속할 확률을 높이는 것으로 나타났다. 본 연구는 다변량 성장혼합모형을 통해 수학교육에서 흥미와 성취도를 비롯한 다양한 특성에 대한 학생들의 변화 양상을 분석하는 새로운 방법을 제시하였다는 점에서 의의가 있다.

잠재범주회귀모형의 성향점수를 이용한 잠재변수의 원인적 영향력 추론 연구 (Latent causal inference using the propensity score from latent class regression model)

  • 이미솔;정환
    • 응용통계연구
    • /
    • 제30권5호
    • /
    • pp.615-632
    • /
    • 2017
  • 무작위 통제시험에서와 달리, 관찰연구에서는 편향되지 않은 인과관계를 추론하기 위한 통계적 전략이 필요하다. 최근 잠재범주분석(latent class analysis; LCA)에서 처치의 평균인과효과(average causal effect; ACE)를 추정하기 위한 새로운 방법들이 제안되었으나 이러한 방법들은 실제 데이터를 분석하는 응용 연구에 초점이 맞춰있다. 따라서 ACE의 참값을 알 수 없어 추정 방법의 성능을 평가하는 데 한계가 있다. 본 연구에서는 Park과 Chung(2014)이 제안한 방법을 개선하여, 다항범주형 처치변수가 잠재변수인 상황에서 다항범주형 결과변수에 미치는 인과효과 추정방법을 제안하고 처치변수와 결과변수가 잠재변수 또는 관측변수를 포함하는 여러 상황에서 본 연구가 제안한 인과효과 추정방법의 성능을 모의실험연구를 통하여 평가하고자 한다. 더불어 'National Longitudinal Study of Adolescents Health'자료를 사용하여 미국 여성 청소년 성장과 약물사용에 대한 인과효과를 추론하고자 한다.