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Abstract

This study develops a new type of latent class analysis (LCA) in order to explain the associations between
one latent variable and several other categorical latent variables. Our model postulates that the prevalence of the
latent variable of interest is affected by another latent variable composed of other several latent variables. For
the parameter estimation, we propose deterministic annealing EM (DAEM) to deal with local maxima problem
in the proposed model. We perform simulation study to demonstrate how DAEM can find the set of parameter
estimates at the global maximum of the likelihood over the repeated samples. We apply the proposed LCA model
in an investigation of the effect of and joint patterns for drug-using behavior to violent behavior among US high
school male students using data from the Youth Risk Behavior Surveillance System 2015. Considering the age of
male adolescents as a covariate influencing violent behavior, we identified three classes of violent behavior and
three classes of drug-using behavior. We also discovered that the prevalence of violent behavior is affected by the
type of drug used for drug-using behavior.

Keywords: deterministic annealing EM, drug-using behavior, joint latent class analysis, multiple
modalities, violent behavior

1. Introduction

Violent and drug-using behavior are a major social issue among US adolescents that contribute to
premature death, disability, and other social problems (Van Horn et al., 2014). Miller et al. (2007) re-
vealed that young injection drug users may be exposed to the risk of premature mortality due to health
risks. These delinquent behavior were studied through previous research that showed strong associa-
tions between drug-using and violent behavior. White et al. (1999) showed that there are concurrent
associations between frequency of drug use and violence among adolescence teenagers. Lundholm
(2013) revealed that acute substance intake and abuse increase the risks of both interpersonal and
self-directed violence. Some studies have also found that students who drank alcohol on school prop-
erty were more likely to carry weapons at school than those who did not drink alcohol (Lowry et al.,
1999) and that the severity of adolescent violent behavior significantly correlated to the frequency of
cigarette smoking, alcohol use, and multiple substance use (DuRant et al., 2000). Dawkins (1997)
found that the use of alcohol and marijuana is more important in terms of their effects on some violent
offenses than other drug use. Many of these types of studies used several questionnaires to measure
drug-using behavior and violent behavior. Standard statistical methods were used to find associa-
tions among variables of interests that transformed the original manifest items to scale or categorical
variables; calculated standard statistics such as chi-square, Spearman ranked correlation, Pearson’s
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correlation, Kruskal-Wallis, and odds ratio; and conducted multiple linear regression or logistic re-
gression to verify the effect of drug-using behavior on some violent offenses. However, variables like
drug-using behavior or violent behavior cannot be measured directly with a single item and should be
considered as latent variables. The latent variable may be identified through multiple manifest items
that measure some hypothetical concepts. The latent class analysis (LCA) can be very helpful in this
line of research. LCA identifies a small number of underlying subgroups of the population, using
several manifest items. These subgroups are called latent classes. Manifest items measuring a latent
variable are strongly correlated and LCA can identify individuals whose response patterns for the
manifest items are similar and classify them into the same latent class.

In this paper, a new type of LCA with multiple latent groups (LCA-MLG) has been proposed
so that we can investigate the effect of drug-using behavior on violent behavior. In our model, the
subgroups of drug-using behavior are identified by the joint latent class analysis (JLCA) using the
framework of LCA with multiple groups. We adopted deterministic annealing EM (DAEM) as a
parameter estimation strategy to overcome the local maxima problem. We then use the proposed
model to the data from the Youth Risk Behavior Surveillance System 2015 (YRBSS 2015) in an
investigation of the effect of the joint patterns of drug-using behavior to violent behavior among the
US high school male students (Centers for Disease Control and Prevention, 2015).

The remainder of this paper presents the description of the proposed model LCA-MLG and esti-
mation methods for the model parameters in Sections 2 and 3, respectively. In Section 4, we evaluate
the performance of DAEM over repeated sampling. We then apply the proposed model to the real
dataset from the YRBSS 2015 in Section 6.

2. Model
2.1. Latent class analysis

The LCA is a finite mixture model for dividing population into several subgroups based on indi-
viduals’ responses to the manifest items. LCA assumes that the population is composed of several
unobservable subgroups (i.e., latent classes) which can be measured by multiple manifest items in-
directly, implying that associations among the manifest items are totally explained by latent class
variable. Suppose there are P categorical manifest items Zj,...,Zp. The responses of each manifest
item for the i individual are obtained as a P-dimensional vector z; = [z1,...,zpr]’, where Zjp can
take any value from 1,...,r, for p = 1,..., P. Let the latent class variable W has D categories, then
the observed-data likelihood of LCA can be specified as
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where I(z;, = h) is the indicator function which is 1 when z;, = h and 0 otherwise. The likelihood
of LCA given in (2.1) is constructed under the local independence assumptions, implying that the
manifest items are conditionally independent given a latent class membership. Here, ¢, = P(Z, =
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h | W = w), referred as the primary measurement parameter, explains the relationship between the
latent class and the p™ manifest item, and 6,, = P(W = w) represents the prevalence of latent class
membership w; therefore, parameters in (2.1) are conditional probabilities, the sum-to-one and non-
negative constraints are explicit (i.e., 25:1 o0y = 1 and Z;”:] Gpnw = lforp=1,...,P,w=1,...,D).

2.2. Joint latent class analysis (JLCA)

The JLCA is an extended version of the LCA model to deal with multiple latent class variables.
Suppose there are J latent class variables C = [C1,...,C;]7, which can be identified by the J sets of
manifest items Y, ..., Y, respectively. Let the j’h latent class variable C; have K; nominal categories
forj=1,...,J.Here, Y; = [Yy;,..., YM],j]T is the vector of the j’h set of manifest items measuring
the latent class C; for j = 1,..., J. Further, let yi; =i, - ,y,ij]T be the i individual’s responses
to a set of M; manifest items measuring the j™ latent class C j» where each item response Yim;j can
take any value from 1 to ', formj=1,...,M;and j=1,...,J. In JLCA, the association among J
latent class variables C = [Cy,...,C;]" can be explained by other latent subgroups (i.e., joint latent
classes). The population can be divided into several subgroups that have similar joint patterns of the
latent class variables C = [Cy,...,Cs]".

Let the joint latent class variable U have S nominal categories describing the most common joint
patterns of the latent classes. Then, the i individual’s contribution to the likelihood function for JLCA
can be specified as
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where 1(Viy,. = = k) is the indicator function which is 1 when Vim;j = = k and O otherwise. The primary
measurement parameter, Py kje; = P(Yn,; = k| Cj = ¢)), is the probability of responding k for the
" jtem measuring the ;" latent class variable, given that the j latent class membership is c; - The

secondary measurement parameter r](’) = P(Cj = ¢; | U = u) represents the probability of the Vi
latent class variable having membershlp ¢; given that the joint latent class membership is u.

The prevalence parameter, y, = P(U = u), represents the probability of having u”* joint latent
class membership. As LCA, all parameters in (2.2) are conditional probabilities, the sum-to-one and
non-negative constraints are explicit (i.e., Z;’ljl Pmkjie; = 1form;=1,...,Mj,c; =1,...,K;, and
j=1.. 5 n, =1forj=1,..Jandu=1,..,S;and £3_ ¥, = 1). The likelihood function
of JLCA given in (2.2) is based on the following three assumptions: (a) The joint class is related
to manifest items only through the latent class variables; (b) the manifest items are conditionally
independent given the latent class membership; and (c) the latent class membership is unrelated each
other given joint latent class u.



176 Jung Wun Lee, Hwan Chung

Piiicy Y,
Pai1cy Yir1
(1)
o Meyju
W‘u ) Pizic,
C2lu,
: Pz
P2jw o
Neyiu

PZ Yy
Puyjicy
Figure 1: A diagram of latent class analysis with multiple latent group variables.

2.3. Latent class analysis with multiple latent group variables (LCA-MLG)

The LCA-MLG postulates that latent class variable may be affected by joint latent class variable
which can be identified by the JLCA model. We therefore consider joint latent class as a latent group
variable in the traditional LCA. We propose the LCA-MLG and illustrate the model in Figure 1. The
right side of Figure 1 is a JLCA with joint latent class variable U uncovered by the vector of latent class

variable C = [Cy,...,C,]7, and each latent variable C j is identified by the j’h set of manifest items
Y, = [Yij,..., Yy, j]T. The left side of Figure 1 is an ordinary LCA with latent variable W which
can be identified through the manifest items Z = [Z,...,Zp]”. Consequently, the outcome latent

class variable W is affected by the joint latent class variable U, and the distribution of the outcome
latent class variable W is varied as the value of latent group variable U changes. In this manner, the
association between latent group variable and the outcome latent class variable can be investigated.
Using the notation given in (2.1) and (2.2), the complete-data likelihood of the LCA-MLG for the i
observation is obtained by

L'=PW=w,Z=z,U=u,C=c,Y =y,
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The likelihood of the manifest items (i.e., the observed-data likelihood) can be derived by the marginal
summation of (2.3) with respect to all considered latent variables:

Li=PZ=1.Y = y)—zz ZZL (2:4)

u=1 c;= cj=1 w=

The prevalence of the outcome latent class variable may be affected by the demographic charac-
teristics or other individual information, and these characteristics can be considered as covariates in
the proposed model (Figure 1). Suppose we have a vector of covariates x; = [x;1, ..., x,-p]T for the i
observation which may influence the prevalence of the outcome latent class P(W = W | U = u). Then
the prevalence of latent class can be modeled with the multinomial logistic regression by substituting
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Owju given in (2.3) into 8, (x;) = exp(xl.Tﬁwm) / 2121 exp(xl.TB”u), where the vector of logistic regression
coeflicients B, = [Biwus - - - » ﬁpw|u]T is interpreted as the log-odds ratio that an individual belongs to
a specific latent class w versus to a baseline latent class, given the latent group membership u.

3. Parameter estimation and model diagnosis
3.1. Deterministic annealing EM

The LCA with latent group variable is composed of an unobservable latent structure; therefore, the pa-
rameter estimation may be regarded as a missing-data problem. The expectation-maximization (EM)
is the standard method to estimate the model parameters for LCA and JLCA. However, the EM algo-
rithm is highly influenced by its initial value. Once the inappropriate initial values are given, the final
solution of the EM may be deviated from the global maximum and one of the local maxima will be
provided. To overcome this problem, a large number of sets of starting values should be tried for the
standard EM algorithm, and we may choose the estimates with the highest log-likelihood. This may
help to resolve the local maxima problem; however, the time and computational cost would be very
expensive. There is also no guarantee that the result with the highest log-likelihood among the can-
didates is actually the global maximum. To overcome the difficulty in local maxima for the proposed
model, we adopt DAEM method (Ueda and Nakano, 1998).

The DAEM is proposed to overcome the local maxima problem by using the principle of maximum
entropy. In the DAEM process, a modified posterior is introduced by additional factor w and the
iteration loop for the w is located after the E-step and M-step in the conventional EM method. The
E-step and M-step are repeated until the estimates converged given w, then the w increases to apply
another run for the EM algorithm with the updated w. It is repeated until the w becomes 1, and we
may take the final estimates from the iteration with w = 1 as the global maximum.

e E-step: The DAEM maximizes the modified observed-data log-likelihood which can be defined as
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where L} is the complete-data likelihood derived in (2.3). Note that F'(w) is identical to the observed-

data log-likelihood when w is equal to 1. To maximize (3.1), we adopt a density function g(U =
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lower bound of F;(w) is calculated as

O VN ewdU=uC = W=wly,z)
2, qU=u,C=¢,W=wl|y,z)

|

gl
R

Nl

Fi(w) =

\Y
g~
Nl

Shs ()
”Zzlog{CI(Uzu C=c,W=wl|y, z‘)}q(U=u,C=c,W=w|y,-,z,‘)

S K K;, D
=ZZ Zq(U:u,CZC,W=W|y,'aZi)10g(L:")w
u=1 c;=1 cj=1 w=1
1 S K K;, D
_ZZ ZZC](U:u,C=c,W=W|}’i,Zi)10g4(U=“’Czc’W=W|yi’zi)'



178 Jung Wun Lee, Hwan Chung

To determine the optimal choice of g, we take functional derivatives with respect to g and set it zero
under the constraint Zizl ZLI - Zw 123:1 qlU = u,C =¢,W =w|y;,z) =1 (Chang and
Chung, 2013). The optimal choice for g is then:
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The optimal choice ¢ may be considered as modified posterior and we can calculate the expectation
of the modified complete-data log-likelihood which can be driven from (3.1) as
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e M-step: We may obtain the estimators that maximize the expectation given in (3.2) by using the
Lagrange multiplier. The updated parameter estimates can be calculated as
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Starting with the fixed value of w as 0, parameter estimates are converged through the DAEM pro-
cess. Next, we increase w, and apply the same procedure using the converged parameter estimates
at the previous step as the initial value. DAEM iterates this procedure until we have w = 1. In this
manner, w-loop intervenes the conventional E- and M-step, and we may obtain the parameter es-
timates at the global maximum without significant consideration for the initial value. If the model
contains any covariates, the ¢ part in the M-step is substituted with the 8 parameters as a coeffi-
cients of multinomial logistic regression. In this case, the standard Newton-Raphson method may
be applied at the phase of w = 1. The details of the Hessian matrix and the score function for g
elements are provided in Appendices A and B.

3.2. Model diagnosis and selection

It is important for LCA to assess model fit with a balanced judgement that considers objective mea-
sures as well as substantive knowledge in order to understand distinctive features and underlying
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structure of the data in a simple manner. The chi-square asymptotic assumption for the likelihood ra-
tio test statistic (G?) generally does not hold since latent class models with different number of classes
are not nested each other (Collins and Lanza, 2013). Instead, Akaike information criterion (AIC) and
Bayesian information criterion (BIC) are popular criteria to assess the relative model fit among can-
didate models with different number of classes. The model with smaller AIC (or BIC) is preferred,
but interpretability of the latent structure also should be considered when choosing the appropriate
number of classes.

It is also important to examine the absolute model fit by calculating the difference between ex-
pected and the observed frequencies. Jeong and Lee (2009) suggested the parametric bootstrap testing
procedure to obtain the asymptotic distribution of test statistics proposed as a goodness-of-fit statistic
for the cumulative logit model. Chung et al. (2011) used parametric bootstrap p-value that may be ob-
tained from the empirical distribution of G2. This empirical distribution is generated by the parametric
bootstrap method, and the bootstrap p-value can be computed from the proportion of the empirical
G?s larger than the observed G?. Using the maximum-likelihood (ML) parameter estimates from the
data, the empirical distribution of G* can be constructed as: (a) fit the LCA with latent group variables
to the data set and calculate the observed G?; (b) generate a bootstrap data set with the ML estimates;
(c) fit the LCA with latent group variables to the bootstrap data set generated at step (b), and compute
the G%. By independently repeating the procedures (b) and (c), the bootstrap samples of G? are pro-
duced, and the right tail probability of the observed G* from step (a) may be regarded as a bootstrap
p-value.

Once the number of latent classes for each latent variable is determined, the number of group latent
classes (i.e., joint latent classes) may be selected in similar criteria such as smaller AIC (or BIC) and
bootstrap p-value. The covariates, then, can be considered with the selected number of latent classes.

4. Simulation study

In this section, we performed two sets of simulation studies to check how fairly the DAEM method
works. The first study confirms that the DAEM method is superior to the EM in finding ML solutions
at the global maximum. The second study evaluates how properly the DAEM estimates model param-
eters in LCA with the latent group variable with covariates. We construct confidence intervals based
on asymptotic standard errors from Hessian matrix given in Appendix B.

In the first study, we generated one target dataset whose number of observation is 500, and we
randomly generated 30 sets of initial values. With these starting values, we independently performed
parameter estimation using (a) the conventional EM method and (b) the DAEM method with w =
[0.01, 0.1, 0.2, 0.4, 0.61, 0.64, 0.69, 0.71, 0.83, 0.91], and compare the values of log-likelihood from
each of 30 sets of initial values. The left plot in Figure 2 is the histogram of log-likelihood values
from the results by the EM algorithm using 30 sets of initial values. We can notice that three different
values appeared, representing that the log-likelihood has two local maxima. Among the 30 trials, only
11 starting values succeeded in converging to the global maximum, and the other 19 trials are trapped
in the local maxima. In DAEM, however, all 30 trials successfully provided the global maxima whose
log-likelihood was —4162.916, implying the DAEM is not affected by the initial value choice when
finding the global maximum.

The second study examined if DAEM properly operates to provide ML estimates of the proposed
LCA model. We generated 200 data sets with a sample size of 500 and calculated ML estimates using
the DAEM. The calculated parameter estimates and the standard errors from the Hessian matrix for
the one sample were then used to construct a 95% confidence interval that checked if it covered the
true value of the parameter or not. These procedures were independently repeated for 200 generated
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Figure 2: A histogram of the log-likelihoods by EM and DAEM. EM = expectation-maximization; DAEM =
deterministic annealing expectation-maximization.

data sets and the coverage of the confidence intervals were subsequently calculated.

The structure of the generated data set is as follows. There are two latent variables which have two
latent classes measured by four manifest items, respectively. These two latent variables form a group
latent variable whose number of joint class is two. There is also one outcome latent variable which has
two latent classes measured by four manifest items. For the measurement parameters, both of strong
measurement (Table 1) and mixed measurement (Table 2) were considered. The average estimates
from the DAEM are considerably similar with the true values, and the coverage probabilities of the
95% confidence intervals are fairly near the 0.95 both in strong and mixed measurements. This implies
that the parameter estimation and model identification work properly.

5. Application to youth survey data
5.1. Data description

The Youth Risk Behavior Surveillance System 2015 (YRBSS 2015) is a biennial survey research
about the health risk behavior and drug-using behavior among US adolescents. Among the 15,624
survey participants in the data, we focus on 4,957 high-school male students 16 to 18 years of age.

In this paper, we have 18 self-report items to measure violent and drug-using behavior. Five items
were used to measure violent behavior: (1) During the past 30 days, on how many days did you carry
a weapon such as a gun, knife, or club? (2) During the past 30 days, on how many days did you not
go to school because you felt you would be unsafe at school or on your way to or from school? (3)
During the past 12 months, how many times has someone threatened or injured you with a weapon
such as a gun, knife, or club on school property? (4) During the past 12 months, how many times were
you in a physical fight? (5) During the past 12 months, how many times were you in a physical fight in
which you were injured and had to be treated by a doctor or nurse? Cigarette smoking was measured
by four manifest items: (1) Have you ever tried cigarette smoking, even one or two puffs? (2) How old
were you when you smoked a whole cigarette for the first time? (3) During the past 30 days, on how
many days did you smoke cigarettes? (4) During the past 30 days, on the days you smoked, how many
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Table 1: Average EST, MSE, and CP of 95% confidence intervals for parameter estimates (strong measurement)

Parameter True EST MSE CpP Parameter True EST MSE CP
P 010  0.101 00003 093 Y1 0.50 0495  0.0020 093
oot 0.10  0.098  0.0003  0.95 ! 0.90 0.903  0.0016  0.96
P31t 010  0.101 00003 095 nip 0.10 0.101 00018  0.94
P41l 0.10  0.100  0.0003  0.96 nﬁ.) 0.10 0.098 00017  0.93
111 090 0900  0.0003 093 i 0.90 0901 00018  0.93
p21211 090 0901  0.0004 093 Boit -1.00  -1.055 00823 096
P31201 090 0900  0.0004  0.94 B 1.00 1.038 00511 093
P42l 090 0900  0.0004 095 Boip 1.00 1023 00672 098
pip 090 0902 00004 095 Biip -1.00  -1.032 00488  0.96
panp 090 0900  0.0003 093 b1 0.10 0.099  0.0004 097
PR 090 0900  0.0003 093 b1 0.10 0.101  0.0004 095
Pallp 090  0.899  0.0004  0.94 é31)1 0.10 0.099  0.0004 093
Pl 0.10 0100  0.0003 097 dan 0.10 0.101  0.0004 093
P21 0.10 0098 00003  0.94 b11p 0.90 0.898  0.0003 091
P31 0.10 0099 00004 095 b1 0.90 0.899  0.0004 095
parap 010  0.01 00003  0.95 b3 0.90 0.899  0.0004  0.94

Pa1p 0.90 0.902 0.0003 0.94

EST = estimates; MSE = mean square error; CP = coverage probability.

Table 2: Average EST, MSE, and CP of 95% confidence intervals for parameter estimates (mixed measurement)

Parameter True EST MSE CP Parameter True EST MSE CP
P 0.10 0097 00011 091 Y1 0.50 0513 00133 097
P21l 0.10  0.098 00011 095 i 0.70 0700  0.0074  0.96
3111 030 0299 00009 098 nip 0.20 0.187  0.0066  0.97
o 030 0298 00011 095 i 0.30 0298  0.0076 098
P12 090 0901  0.0008  0.96 i 0.80 0.813 00074  0.96
p21201 090 0902  0.0006 097 Boii -1.00  -1242 07771 098
p3121 070 0700  0.0008  0.98 Bl 1.00 1212 07228 098
P42l 070 0693  0.0008  0.95 Boip 1.00 1331 06397 098
PR 090  0.899  0.0005  0.98 Biin -1.00  -1.349 06534 099
211 090  0.898  0.0006  0.97 é1 0.10 0.098 00015 092
P31 070 0709  0.0006  0.98 b1 0.10 0.087  0.0016  0.95
paLlp 070 0702  0.0009 0.3 b1 0.30 0310  0.0007 097
Pl 0.10 0103 00007 095 b4 0.30 0302 0.0009 095
pa1ap 010  0.096  0.0008  0.98 b11p 0.70 0.691  0.0017 093
P31 030 0299 00009 098 b1 0.70 0701 0.0007 093
pa1ap 030 0300 00015  0.96 b3 0.10 0.103  0.0009 095

Pa1p 0.10 0.102 00017 096

EST = estimates; MSE = mean square error; CP = coverage probability.
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Table 3: Percentages of responding ‘yes’ to the manifest items for each latent variable and their missing rates

Latent Manifest item Yes Missing
variable Questionnaires on “Have you...?” (%) (%)

Carried a weapon during recent 30 days (Carry Weapon) 24.26 8.21

Violent Absent to school due to feeling unsafe recent 12 months (Feeling Unsafe) 5.14 0.32

behavior Threatened by weapon on school recent 12 months (Being Threatened) 7.10 3.87

Involved in a physical fight recent 12 months (Physical Fight) 22.47 13.71

Seriously injured in a physical fight recent 12 months (Seriously Injured) 3.31 12.16

Ever tried cigarette smoking (Lifetime Smoking) 36.35 9.96

Cigarette Smoked before age 13 years for the first time (Early CIG Onset) 8.73 5.85

smoking Smoked cigarettes during the recent 30 days (Recent Smoking) 13.33 5.18

Smoked more than 10 cigarettes per day (Heavy Smoking) 1.45 5.38

Ever drunken alcohol (Lifetime Drinking) 64.95 3.18

Alcohol Drunken alcohol before age 13 years for the first time (Early ALC Onset) 19.42 2.78

consumption Drunken alcohol during the recent 30 days (Recent Drinking) 33.10 16.76

Drunken five or more drinks of alcohol in a row (Binge Drinking) 21.44 5.26

Other Ever tried MJ (Lifetime MJ Use) 45.87 4.17

illegal Tried MJ before age 13 years for the first time (Early MJ Onset) 10.65 2.54

drug Used MJ during the recent 30 days (Recent MJ Use) 26.62 10.53

use Ever tried other illegal drugs (Lifetime Illegal Drug Use) 15.29 5.41

Ever sold or offered illegal drug on school property (Sell Drug on School) 25.47 3.77

MJ = marijuana.

during the past 12 months, did you ever try to quit smoking cigarettes did you smoke per day? Four
items on the alcohol consumption are as follows: (1) During your life, on how many days have you
had at least one drink of alcohol? (2) How old were you when you had your first drink of alcohol other
than a few sips? (3) During the past 30 days, on how many days did you have at least one drink of
alcohol? (4) During the past 30 days, on how many days did you have 5 or more drinks of alcohol in a
row, that is, within a couple of hours? Finally, five items on the other illegal drug-using behavior were:
(1) During your life, how many times have you used marijuana? (2) How old were you when you tried
marijuana for the first time? (3) During the past 30 days, how many times did you use marijuana? (4)
Have you ever tried one of these illegal drugs: cocaine, sniffed solvents, heroin, methamphetamines,
or ecstasy? (5) During the past 12 months, has anyone offered, sold, or given you an illegal drug on
school property?

Among the original 18 manifest items, the quantitative variables are changed into binomial items:
the variables about number of days (or times) are categorized as 1 if one day or more (or one time
or more), and 0 otherwise, changing the responses into binary patterns (i.e., whether an individual
has experience in something or not). The items on the age of first use are categorized as 1 under 13
years old, and O otherwise, indicating whether or not early exposure. Table 3 shows the proportions of
responding ‘yes’ to the manifest items and the missing rates.

Using these 18 items along with their age as a covariate, we inspect the effect of drug-using
behavior towards violent behavior, by answering following questions: (a) What kinds of latent classes
may be found for each drug use and violent behavior? (b) What kinds of common joint patterns can
be identified for cigarette, alcohol, and other illegal drug use behavior? (c) How does the prevalence
of violent behavior change as the joint latent class membership of drug use varies?

5.2. Model selection

To construct the LCA-MLG model we need to determine the number of latent classes for each la-
tent variable. Firstly, we perform four LCAs to select the number of classes for the respective latent
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Table 4: Goodness-of-fit measures for a series of latent class analysis models with the different number of
classes for four different class variables

Latent variable Number of classes AIC BIC Bootstrap p-value
2 14779.8 14851.4 0.00
. . 3 14687.0 14797.6 0.00
Violent behavior 4 14652.0 14801.7 0.34
5 14663.7 14852.4 0.49
Cigarette smoking 2 11195.1 11253.6 0.00
3 11058.8 11150.0 0.34
Alcohol consumption 2 16826.8 16885.4 0.00
3 16607.9 16699.0 0.41
2 20381.3 20452.9 0.00
. 3 20275.3 20386.0 0.28
Other illegal drug use 4 20279.7 20429.4 0.45
5 20291.2 20480.0 0.68

AIC = Akaike information criterion; BIC = Bayesian information criterion.

variables (i.e., violent behavior, cigarette smoking, alcohol consumption, and other illegal drug use)
based on each set of manifest items. In this step, covariates are not necessary to be included due to the
marginalization property (Bandeen-Roche et al., 1997). We adopt AIC, BIC, and bootstrap p-value
with significance level @ = 0.05 for the goodness-of-fit statistic: the model with smaller AIC (or BIC)
and bootstrap p-value larger than 0.05 were preferred. We also assess the interpretability of identi-
fied latent classes. For the bootstrap p-value, we generate 100 bootstrap samples of G>-statistic, and
compute the proportion of the bootstrap samples of G that are larger than the observed G>.

Table 4 shows the goodness-of-fit statistics with the different number of classes for each latent
variable. Note that only 2- and 3-class models are allowed to be fitted for Cigarette smoking and
Alcohol consumption because 4-class model has 4 X 4 + (4 — 1) = 19 parameters to be estimated
with four binary items having 2% — 1 = 15 degrees of freedom only. Table 4 shows that all drug-using
behavior (i.e., Cigarette smoking, Alcohol consumption, and Other illegal drug use) can be adequately
summarized by the 3-class model. For Violent behavior, the 3-class model shows the best fit in terms
of BIC; however, the 4-class model shows the best in terms of AIC. In the 4-class model, however, the
meaning of the identified classes are not distinct: the p-parameter estimates of the two classes are very
similar, implying that these two classes should have a similar label. Both 3-class and 4-class models
should therefore be considered as candidates for constructing the LCA-MLG model.

Given the number of latent classes for each of drug-using behavior, we determine the number of
joint latent classes in the LCA-MLG model. Table 5 lists a series of LCA-MLG models fitted with
various number of joint latent classes for drug-using behavior and their goodness of fit measures.
The 3-class model and the 4-class model were both considered since the number of latent classes for
Violent behavior were inconclusive in the previous step. Table 5 shows that the LCA-MLG model
with four outcome classes and three or four joint classes can be considered as the model with the best
fit. However, we decide to select the model with three outcome classes because the interpretational
difference between the two outcome classes are still obscure. Among the models with three outcome
classes, the LCA-MLG with three joint classes shows the smallest BIC and the model with four joint
classes shows the smallest AIC. We select the LCA-MLG with three outcome classes and three joint
classes as a final model because both show an acceptable bootstrap p-value. During these procedures,
parameter estimation was conducted using the DAEM method, and the Hessian matrix of the model
was investigated to confirm that negative Hessian is positive definite. Any boundary solution with
smaller than 0.001 that makes the Hessian singular was constrained as O (or 1 if it is larger than
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Table 5: Goodness-of-fit measures for a series of LCA-MLG models with the different number of joint classes
of drug-using behavior (i.e., Cigarette smoking, Alcohol consumption, and Other illegal drug use) and outcome
latent classes of Violent behavior

Number of classes Number of joint classes AIC BIC Bootstrap
for Violent behavior for drug-using behavior p-value
2 78725.8 79187.9 0.01
3 78590.1 79110.8 0.06
3 4 78555.8 79135.0 0.24
5 78547.7 79185.5 0.22
6 78611.0 79307.4 0.33
2 78661.5 79169.2 0.04
3 77987.4 78560.1 0.16
4 4 77911.2 78614.1 0.16
5 77979.7 78617.5 0.32
6 163880.7 164648.7 0.34

LCA-MLG = latent class analysis with multiple latent groups; AIC = Akaike information criterion; BIC = Bayesian infor-

mation criterion.

Cigarette smokmg

[% ]
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Figure 3: A structure of the selected latent class analysis with the multiple latent groups model.

0.999). Finally, age was considered as a covariate with the selected LCA-MLG illustrated in Figure 3.

5.3. Parameter estimates for multiple latent group variables

The LCA-MLG model considered drug-using behavior as a group variable that may affect the out-
come latent variable of Violent behavior. There were three latent variables that measured drug-using
behavior: Cigarette smoking, Alcohol consumption, and Other illegal drug use.

Under the selected model structure, the primary measurement parameter estimates for drug-using
behavior (i.e., p-parameters); the prevalences of the latent classes are given in Table 6. For Cigarette
smoking, class 1 indicates ‘non-smoker’ group, having all p-parameters with very small value. Class
2 shows high probability for Lifetime Smoking only, so it is labeled as ‘lifetime smoker’ group. Class
3 shows the high probability for Lifetime Smoking, Early CIG Onset, and Recent Smoking, implying
that this group can be named as ‘early onset current smoker.” For Alcohol consumption, class 1 shows
small values for all items, so it can be named as ‘non-drinker’ group. Class 2 shows high tendency
of responding ‘yes’ to the Lifetime Drinking item only, so it may be called ‘lifetime drinker’ group.
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Table 6: The estimated probabilities of responding ‘yes’ to the manifest items and class prevalences for each of
the latent variables

Latent class for Cigarette smoking

Manifest item

Non-smoker Lifetime smoker Early onset current smoker
Lifetime Smoking 0.047 1.000* 1.000*
Early CIG Onset 0.000* 0.158 0.535
Recent Smoking 0.000* 0.219 1.000*
Heavy Smoking 0.000* 0.000* 0.200
Class prevalence 0.614 0.298 0.088

Manifest item Latent class for Alcohol consumption

Non-drinker Lifetime drinker Binge drinker
Lifetime Drinking 0.160 1.000* 1.000*
Early ALC Onset 0.036 0.233 0.382
Recent Drinking 0.000* 0.306 1.000*
Binge Drinking 0.000* 0.000* 0.886
Class prevalence 0.378 0.352 0.270

Manifest item

Latent class for Other illegal drug use

Non-user Current marijuana user Early and multiple drug user
Lifetime MJ Use 0.038 1.000* 1.000*
Early MJ Onset 0.000* 0.124 0.497
Recent MJ Use 0.000* 0.497 0.835
Lifetime Illegal Drug Use 0.032 0.199 0.803
Drugs Offered at School 0.165 0.306 0.577
Class prevalence 0.539 0.314 0.147

MJ = marijuana. * The probabilities are constrained to be zero or one.

High probabilities for all items except for Early ALC Onset in class 3 implies that this group can be
represented as ‘binge drinker’ group. In the similar manner, three classes of Other illegal drug use
can be named as ‘non-user,” ‘current marijuana user,” and ‘early and multiple drug user,” respectively.
The p-parameters in the first class are all close to zero, and second latent class has high probability
for Lifetime MJ Use and Recent MJ Use. The third latent class has high p-parameters for Lifetime MJ
Use, Recent MJ Use, Lifetime Illegal Drug Use and Drugs Offered at School, showing an early onset
behavior on marijuana, and lifetime-in school exposure of illegal drugs.
The estimated class prevalence for drug-using behavior may be estimated as

s
P(CjZCj)ZZp(CjZCj|Uzu)p(UIM)
1

2
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forc; = 1,...,K;and j = 1,...,J. For example, Table 6 shows that the largest class in Alcohol
drinking is non-drinker with prevalence 0.378. Three latent variables (i.e., Cigarette smoking, Alcohol
drinking and Other illegal drug use), identified by their respective manifest items, form a joint latent
variable which then becomes a group variable.

Table 7 shows the secondary measurement parameters (i.e., 7-parameters) for measuring common
patterns of three latent variables associated with drug-using behavior. As introduced in Section 2, n-
parameter represents the conditional probability of being in the specific class for each of the latent
variables given a joint class membership. In the first joint class, individuals tend to be ‘non-smoker’



186 Jung Wun Lee, Hwan Chung

Table 7: The estimated probabilities of belonging to a latent class for a given joint class membership and the
prevalence of joint classes

Joint latent class for drug-using behavior

Latent class

Non drug user Current drug user Multiple drug user
Ci ” Non-smoker 0.988 0.401 0.079
18 “]:.e ¢ Lifetime smoker 0.005 0.598 0.341
smokng Early onset current smoker 0.007 0.001 0.580
Alcohol Non-drinker 0.760 0.089 0.034
_Aeo ‘; ; Lifetime drinker 0.220 0.597 0.059
consunmpnon Binge drinker 0.020 0.314 0.907
Other Non-user 0.964 0.259 0.038
illegal Current marijuana user 0.036 0.720 0.009
drug use Early and multiple drug user 0.000" 0.021 0.953
Joint class prevalence 0.443 0.412 0.145

* The probabilities are constrained to be zero or one.

for Cigarette smoking, ‘non-drinker’ for Alcohol consumption, and ‘non-user’ for Other illegal drug
use. This implies that the first joint class represents the subgroup that does not have tendency to use
any drug and can therefore be named as ‘non drug user.’” In the second joint class, individuals shows
59.8% probability of ‘lifetime smoker,” 59.7% probability of ‘lifetime drinker,” and 72% probability
of ‘current marijuana user.’

As a result, the second joint latent class may be interpreted as ‘marijuana user with cigarette
and alcohol onset’ group. For the third joint latent class, individuals show probabilities of 0.580 for
‘early onset current smoker,” 0.907 for ‘binge drinker,” and 0.953 for ‘early and multiple drug user.’
Therefore, the third joint latent class can be labeled as ‘multiple drug user’ group. The last row in
Table 7 indicates vy estimates, representing the prevalence of the joint latent classes. The most common
joint class is ‘not drug user’ group with a prevalence rate of 0.443, while ‘multiple drug user’ has the
smallest prevalence rate 0.145.

5.4. Parameter estimates for outcome latent variable

Under the selected LCA-MLG model, the outcome latent variable is Violent behavior. The primary
measurement parameter estimates for the outcome latent variable (i.e., ¢-parameters) and the preva-
lence of the identified latent class is given in Table 8. We can see that class 1 has small ¢-estimates for
all five binary items, implying ‘not violent’ group. Class 2 has high probabilities for Carry Weapon
and Physical Fight items, so it may be named as ‘weapon carry and fight’ group. Class 3, which has
high probabilities for Carry Weapon, Being Threatened and Physical Fight, may be labelled as ‘se-
riously violent’ group. The estimated prevalences of latent classes for Violent behavior are obtained
by

P(W=w)

n S
1 . .
;ZZP(W:wl U=ux)PU =u
i=1 u=1

n S
% Z Z Swlu (xi) /}\/u,

i=1 u=1

forw = 1,...,D. In Table 8, we can see that ‘not violent’ group is the most prevalent with 0.762.
The second largest class is ‘weapon carry and fight’ group, whose class prevalence is 0.185. The
prevalence of the ‘seriously violent’ group is 0.053.
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Table 8: The estimated probabilities of responding ‘yes’ to the manifest items and class prevalences for each of
latent variables

Latent class for Violent behavior

Manifest item

Not violent Weapon carry and fight Seriously violent
Carry Weapon 0.177 0.501 0.797
Feeling Unsafe 0.018 0.066 0.494
Being Threatened 0.021 0.113 0.724
Physical Fight 0.057 1.000* 0.827
Seriously Injured 0.000* 0.117 0.364
Class prevalence 0.762 0.185 0.053

* The probabilities are constrained to be zero or one.

Table 9: The estimated odds ratios of age for Violent behavior for a given joint class membership and 95%
confidence intervals (‘not-violent’ group is the baseline)

Latent class for Violent behavior

Joint latent class

‘Weapon carry and fight Seriously violent
Non drug user 0.723 [0.472, 1.106] NA*
Current drug user 0.690 [0.558, 0.852] 0.815[0.325, 2.041]
Multiple drug user 0.892 [0.640, 1.241] 0.857 [0.526, 1.396]

* The probability of belonging to ‘seriously violent’ for ‘non drug user’ group is constrained to be zero.

Table 10: The estimated prevalence of Violent behavior given a latent membership of group variable (i.e.,
drug-using behavior)

Latent class for Violent behavior

Group variable

Not violent Weapon carry and fight Seriously violent
Non drug user 0.943 0.057 0.000*
Current drug user 0.742 0.231 0.027
Multiple drug user 0.267 0.450 0.283

* The probability of belonging to ‘seriously violent’ for ‘non drug user’ group is constrained to be zero.

We consider age as a covariate to investigate its influence on Violent behavior with an effect of
drug-using behavior. Table 9 illustrates the estimated odds ratios of age for the identified classes
of Violent behavior and their 95% confidence intervals. As introduced in Section 3, the asymptotic
standard errors of the estimates is obtained as the square root of the diagonal terms of the negative
Hessian matrix evaluated by the ML estimates. The effects of age on the prevalence of Violent behavior
are significant only for ‘current drug user’ group.

The estimated prevalences of Violent behavior given a latent membership of group variable (i.e.,
drug-using behavior) are given in Table 10. Note that the values in Table 10 can be obtained by

R 1.
PW=w|U= =—§5wu ;
( w u) A u (X1

1 " exXp (xl/‘ﬁwlu)

D — .
n i=1 Zd:l eXp (xl/'ﬂd\u)

Table 10 shows that the prevalences of Violent behavior are moving from ‘not violent’ to ‘seriously
violent’ as drug-using behavior from ‘non drug user’ to ‘multiple drug user.” We may conclude that as
drug-using behavior become more serious, a risk of exposure to violent behavior increases.
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6. Conclusion

This paper proposes a new latent variable model to examine the relationship between violent behav-
ior and multiple drug-using behavior among high-school male students. The conventional LCA may
be able to deal with a single latent variable. The newly proposed LCA-MLG with covariates can in-
vestigate joint effects of several latent variables on the prevalence of outcome latent variable. EM
algorithm is widely adopted for the parameter estimation of the incomplete data, but it has several
problems of local maxima in the likelihood. We adopted the DAEM algorithm (Ueda and Nakano,
1998) to overcome this problem and to provide with precise ML estimates of latent variable model
where the latent structure is quite complex. In addition, the Hessian matrix of the model was calcu-
lated to provide asymptotic standard error of the estimates. The analysis of YRBSS 2015 indicates
three representative subgroups that show similar patterns in drug-using behavior including cigarette,
alcohol and other illegal drugs. These common patterns form a joint latent variable whose joint la-
tent classes can be referred as ‘non drug user,” ‘current drug user, and ‘multiple drug user’ group
depending on the extent of experiences or behavior towards various drugs. Similarly, three common
subgroups were discovered for the violent behavior of high-school students, as measured by five bi-
nary items. The LCA-MLG model enables us to examine how the prevalence of Violent behavior are
affected with respect to group latent membership and covariate. We found that the probability of be-
longing to ‘weapon carry and fight’ and ‘seriously violent’ compared to the ‘not violent’ increases as
the degree of drug-using behavior becomes serious. For individuals who are in ‘current drug user,” the
probabilities of belonging to the ‘weapon carry and fight’ or ‘seriously violent’ compared to the ‘not
violent’ decrease as age increases.

The structure of LCA-MLG tries to explain the association between several latent group variables
and one latent outcome variable. However, the associations covered with LCA-MLG model are not
exact causalities. Consequently, examining causal inference between several latent variable may be a
valuable further research topic. Consequently, we have made a DAEM routine for LCA-MLG written
in R language (version 3.3.1) which is available on request.

Appendix A: Elements of the score function

Let O be a vector of all free parameters for LCA-MLG. The score function S(®) is obtained by
the first-ordered derivatives of the log-likelihood of the LCA-MLG given in (2.4) with respect to the
model parameters @. Let 8 be the vectorized 8 parameters in the LCA-MLG model. The elements of
the first-derivative vector with respect to S are given by

- dlogL; 4
= Xi 9i u,w _6wu(-xi)9iu s
; B ; g (O = Oy wl
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and y-parameters, respectively. The elements of the first-derivative vector with respect to Ponjic;» 1],(4" ),

&, and y are obtained by
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form;=1,...,Mj,c;=1,....K;,j=1,....,J,p=1,...,P,d=1,...,D,and s = 1,...,S. Here,
gymlj is the indicator function which has the value of 1 if y;,;; = k, otherwise 0. Note that there are

; — 1 and K; — 1 free parameters in p,, ;. and I]U) respectively. Therefore, the score function of

the free parameters for p,, ;. and l](] ) can be obtained by multiplying a constraint matrix A¢ on the
first-derivative vectors, where Acisa(C — 1) x C matrix, composed of an identity matrix in the first
C — 1 columns and a column vector of —1 in the last column.

Appendix B: Elements of the Hessian matrix

The Hessian matrix is the negative inverse matrix of the second derivatives of the log-likelihood with
respect to the model parameters @. The elements of the second derivative matrix with respect to 8 are
given by.

d*log L; o
= ), Xig¥ig (e [digun) G = S (x2)) = iy O (Xi)] = i sy i} »
Z aﬁquaﬁqwm ; g-riq’ uu nu,w ww wiu l u,w wiu 1 " w nuw
where di(u,w) = 9,<(u,w) - 6W|u(x,»)6’i(u) for q, q, = 1, ooy l, w = 1, cee ,D - 1, aplu = 0, u, u = 1, cee ,S,
and {,,» = 1if u = u’, 0 otherwise. The elements of the second derivative matrices with respect to 8
and p,, jc.» qf/), 7. and ¢, are obtained by

s

Z o2 IOg L; Z xlq l(Ll»Cj»W) - ei(qu)ei(L'j) - 6wlu(xi) [ei(u,c'/) - gi(Ll)Hi(Cj)]} {y:’mjjk
op -

mlkjlc,aﬁqwlu pmjkjlcj

i=1

i 62 log Li - -xiq {é’uu’ei(u,w,q) - gi(u’,w)gi(u,c,v) - 6W|u’(xi) ({uu’ - gi(u’)) gi(M,Cj)}

i=1 5’U£{?u5ﬁqu i=1 an(ﬁu
M — Z {(guu’ - t(u)) g(u w) — wlu (X)L — O )gz(u)}
67uaﬁqw\u’ 1 ayu
Z e sl _ Y T Bituaw) G = i) = Swia(xi) By — i Oion 1} Caiph
a¢ph|waﬁqw lu 1 ¢ph|w B

formj=1,....Mpk=1,....rp,c;=1,....Kj,w=1,....D-1,p=1,...,r, j=1,...,J,and
s=1,.. S Here gym is an indicator functlon which has the value of 1 1f Yim;j = k, 0 otherw1se

Note that there are S — 1, r, — 1, m; — 1, and K; — 1 free parameters in y, ¢ and n(”

plw» pm,jlc ’
respectively. Therefore, the Hessian elements of the free parameters for y, @, Py j,» and 7](” can
be obtained by multiplying constraint matrix Ac on the second-derivative matrices. The dimension of
the constraint matrix A¢ is determined by the number of free parameters for each Pmjjic;» qﬁ,’ ), v, and
&> TESpEctively.

The elements of the second derivative matrices with respect to p are:
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forw=1,....,.D,p=1,....,P,h=1,...,rp,mj = 1,... .M, k, k' = 1,...rmj, cj =1,...,Kj,
u, ' =1,...5,and j, j = 1,...,J. Here, g“yimﬂk is an indicator function which has the value of
Lif yim,;; = k, O otherwise. Note that there are r,,, — 1 and K; — 1 free parameters in p,, e and

I]f,] ) respectively. Therefore, the Hessian elements of the free parameters for p,,. Jile; and 1](] ) can

be obtained by multiplying constraint matrices Ac and Ac? on the second-derivative matrices. As
discussed before, the dimension of the constraint matrices are determined by the number of free
parameters for each p,, . . 1)5,’), Y. and ¢, respectively.

The elements of the second derivative vector with respect to 5 are:
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elements of the free parameters for nf,]),ﬂ(u/) #,,, and y can be obtained by multiplying constraint

matrices Ac and A¢T on the second-derivative matrices.
The elements of the second derivative vector with respect to y are:
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forj,j=1,...,Jandu,u’ = 1,...,5. There are S —1 free parameters in y and r, — 1 free parameters
in ¢,,,,, respectively. Therefore, the Hessian elements of the free parameters for y, ¢, and y can be
obtained by multiplying constraint matrices Ac and A on the second-derivative matrices.

The elements of the second derivative matrices with respect to ¢ are:

b}
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forp =1,...,P, k = 1,...rp, ¢c; = 1,...,K;. Here, Laih is an indicator function which has the

value of 1 if z;, = h, otherwise 0. Note that there are rp, — 1 and rjy — 1 free parameters in ¢, and
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&\ respectively. Therefore, the Hessian elements of the free parameters for ¢, and ¢, can
be obtained by multiplying constraint matrices A¢ and A’ on the second-derivative matrices.
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