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PERFORMANCE EVALUATION OF INFORMATION
CRITERIA FOR THE NAIVE-BAYES MODEL IN THE
CASE OF LATENT CLASS ANALYSIS: A MONTE CARLO
STUDY

Jost G. Diast

ABSTRACT

This paper addresses for the first time the use of complete data informa-
tion criteria in unsupervised learning of the Naive-Bayes model. A Monte
Carlo study sets a large experimental design to assess these criteria, un-
usual in the Bayesian network literature. The simulation results show that
complete data information criteria underperforms the Bayesian information
criterion (BIC) for these Bayesian networks.
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1. INTRODUCTION

In recent years the Naive-Bayes model has become a popular alternative to
more complex classifiers (Duda et al., 2001). This model can be casted as a
Bayesian network (Pearl, 1988), where the structure of the network has to be
learned (Friedman et al., 1997). Lety = (y1,. .., Yn) represent a sample/training
data set of size n; J represents the number of manifest or observed variables;
and datum y;; indicates the observed value for variable j in observation 4, with
i=1,...,n,7=1,...,J. The finite mixture model (a type of Bayesian network
for unsupervised learning) with S latent classes for y; = (y;1,...,yis) is defined
by the density f(yi; ) = Zle msfs(¥i;0s), where the latent class proportions
T, are positive and sum to one; 0, denotes the parameters of the conditional
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distribution of y; for the latent class s, defined by fs(y:;0s); m = (71,...,Ts-1),
6 = (64,...,0s) and ¢ = (m,6). For nominal data, Y; has L; categories, y;; €
{1,..., L;}. From the local independence assumption underlying the Naive-Bayes
model — the J manifest variables are independent given the latent variable —
fs(yi;05) = 3-]=1 H{;’l ;(ly’ zl), where 0;; is the probability that observation i
belonging to latent class s falls in category ! of variable j. Category [ is associated
with the binary variable defined by the indicator function I(y;; = 1) = 1 and 0

otherwise. Note that ZIL; 1 851 = 1. Finally, the Naive-Bayes model has density

J Lj
fyis) = ZWSHH9£§?ij=l), (1.1)

where the number of free parameters to be estimated in vectors 7 and 6 are
dr =S—-1land dg =S Z;]:l(Lj — 1), respectively. The total number of free
parameters is d, = dr + dg. The Naive-Bayes model may present problems of
identifiability (Goodman, 1974). However, Naive-Bayes models discussed here are
identified. The likelihood and log-likelihood functions are L(p;y) = [T f(¥i; ¢)
and £(¢;y) = log L(y;y), respectively. It is straightforward to obtain the maxi-
mum likelihood estimates (MLE) of mixture’s parameters by the EM algorithm
(Dias and Wedel, 2004).

Despite the increasing widespread application of this Naive-Bayes model, es-
timating the number of latent classes to retain remains an important topic of re-
search. Information criteria have become popular as a useful approach to model
selection. The basic principle under these criteria is parsimony that results from
the trade-off between model fit and model complexity. A number of model selec-
tion criteria has been suggested, the most prominent and widely used being the
Akaike information criteria (AIC) of Akaike (Akaike, 1974) and the Bayesian in-
formation criteria (BIC) of Schwarz (Schwarz, 1978). Recently, new criteria have
been introduced such as the classification likelihood criterion (Biernacki and Go-
vaert, 1997) and the integrated classification likelihood criterion (Biernacki et al.,
2000).

Despite extensive study of the performance of information criteria in the sta-
tistical literature, little is known about the performance of these criteria for the
Naive-Bayes model. Therefore, a Monte Carlo experiment is designed to assess
the ability of the different information criteria to learn the true model and to
measure the effect of the design factors.

This paper is organized as follows. Section 2 reviews the literature on model
selection criteria from a Bayesian viewpoint. Section 3 discusses model selection
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based on data augmentation. Section 4 describes the design of the Monte Carlo
study. Section 5 presents and discusses the results. The paper concludes with a
summary of main findings, implications and suggestions for further research.

2. BAYESIAN MODEL SELECTION

Bayesian estimation focuses on the posterior distribution of parameters p(¢ly),
which is proportional to L(p;y)p(¢). The prior distribution p(p) represents how
likely different values of ¢ are, before seeing the data. It is assumed here that
parameters are a priori independent, p(¢) = p(m) Hf=1 ]_[3]=1 p(0s;). The Dirich-
let distribution is a natural prior for these parameters. For w = (wy,ws,...,wk),
it is denoted by D(&1, ..., &) with parameters (€1, ...,&) and density function
plwr,wa,. .. ,wg) = (I’({o)/]"[?=1 I'(¢)) H§=1 w?j—l, wherew; > Oforj =1,...,k,
ZLI w; = 1, I'(.) is the gamma function and § = Z?=1 €;. The expected value
and variance of w; are E(w;) = £;/& and Var(w;) = &(& — &)/ [€3(¢0 + 1)],
respectively. In the analyses below, we consider two special types of priors:

1. The uniform prior (U) corresponding to a Dirichlet distributions with 7 ~
D(1,...,1) and 65; ~ D(1,...,1) is given by

J
log p(p) = log (S — 1)!] + S log[(L; — 1)1]. (2.1)
j=1

2. The Jeffreys’ prior (J) corresponding to a Dirichlet distributions with 7 ~
D(1/2,...,1/2) and 055 ~ D(1/2,...,1/2) is

J J s J j
L 1 1
logp(p) = S E log’ (7> — SlogT (§> E L; + 5 E E E log 05
S 1\ 1<
+logl (5) — Slogll (5) + 2 SE=1 log s. (2.2)

The Bayesian information criterion (BIC), proposed by Schwarz (Schwarz,
1978), utilizes the integrated likelihood p(y) = [ L(y;y)p(¢)de, which is the
weighted average of the likelihood values. Using the Laplace approximation about
the posterior mode ¢ where L(p;y)p(¢) is maximized, it results (Tierney and
Kadane, 1986)

5 1 3 d
logp(y) ~ U(@;y) +logp(@) — 5 log [H(g; y)| + 5‘” log(2m), (2.3)
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where H(p;y) is the negative of the Hessian matrix of the log-posterior function,
log L{y; ¥)p(), evaluated at the modal value ¢ = ¢. BIC assumes a proper
prior, which assigns positive probability to lower dimensional subspaces of the
parameter vector. For a very diffuse (almost non-informative and consequently
ignorable) prior distribution, H(; y) can be replaced by the observed information
matrix I(3;y). Replacing the posterior mode by the MLE {, the approximation
becomes

R 1 R d
log p(y) ~ &(@;y) +log p(?) — 5 log [H(&; ¥)| + 7" log(2m). (2.4)

From the asymptotic behavior of (2.4), the Bayesian information criterion (BIC)
chooses S that minimizes

BIC = —24(@;y) + dy logn. (2.5)

Therefore, BIC selects the model with the greatest asymptotic posterior probabil-
ity and does not depend on the prior. From the notion of stochastic complexity,
a criterion identical in form to BIC is derived, usually known as minimum de-
scriptive length (MDL), but with a broader justification (Rissanen, 1987).

3. COMPLETE DATA INFORMATION CRITERIA

Complete data information criteria are based on data augmentation, where
the observed data (y) is expanded to a new space (y,z), which includes the
missing data (z). The missing datum (z;) indicates whether latent class s has
generated observation i. The expected value of z;; is given by

s = sts(}’ﬁos) : (3‘1)

S
Z vav()’i; 6v)
v=1

and corresponds to the posterior probability that y; was generated by latent class
s. Note that « is function of ¢ and y. The entropy of the matrix o = (as),
i=1,...,nand s =1,...,5 is defined by EN(a) = = > 1", Zle ais log ays. For
EN(a) ~ 0, latent classes are well separated.

Celeux and Soromenho (1996) introduced an entropic measure for the selec-
tion of S. As EN(a) has no upperbound, they introduced the normalized entropy
criterion (NEC). NEC chooses S that minimizes

EN(&)

NEC = —— —
L{py) — 4L(By)

(3.2)
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where £1(3;y) is the log-likelihood value for the one-latent-class model and &
comes from (3.1) at the MLE. To overcome the impossibility of deciding between
S =1and S > 1, Biernacki et al. (1999) proposed the following rule: if there is
no S such that NEC < 1, then S =1 has to be preferred.

Hathaway (1986) observed that the complete log-likelihood can be decom-
posed into

lo(p;y,z) = L(p;y) + Z Z zis log aus. (3.3)

i=1 s=1
The classification likelihood criterion (CL) proposed by Biernacki and Govaert
(1997) chooses S that minimizes

CL = —26(3;y) + 2ENC(2, &), (3.4)

where the level of penalization depends on the entropy of the classification given
by ENC(Z,a) = — > 1y ZSS:I Zis log Qis, with Z;s = 1, if argmax; ;s = s and
0 otherwise. Biernacki et al. (2000) named this function as MAP (Maximum A
Posteriori): Z =MAP(@). McLachlan and Peel (2000) suggested instead replacing
z by its estimated expected value @& given the observed data (y). The complete
likelihood criterion (CLC) chooses S that minimizes

CLC = —26(3;y) + 2EN(@). (3.5)

The integrated or marginal likelihood of the complete data, given by p(y,z) =
[ Le(p;y,2z)p(w)de, can be used as a model selection criterion. Given that
log p(y, z) = log p(y|z)+log p(z), log p(y|z) can be approximated by log p(y |z, 5)—
(dg/2) log n, where 8 is the MLE of 9, with log p(y|z, ) = £c(¢;y, z) -3t Ele
z;s log ms. For multinomial data z; ~ M(1; 7, ..., 7s) and adopting the Dirichlet
distribution for 7 with parameters € = (¢, .. ., €}, one has log p(z) = Zf=1 log I'(e+
nms)— log ['(Se+n)+log I'(Se)— S log I'(e). The integrated classification likelihood
criterion (ICL), proposed by Biernacki et al. (2000), chooses S that minimizes

S
ICL = —20(3;y) + 2ENC(%,8) + 2n ) _ #,log &, + dglogn — 2logp(z), (3.6)
s=1

with s = (1/n) 3.7 ; Zs. The integrated complete likelihood criterion (ICOMPL)
chooses S that minimizes

5
ICOMPL = —2¢(g;y) + 2EN(@) + 2n Z 7slog7s + dglogn — 2log p(@), (3.7)
s=1
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where T = (1/n) 3, @;s. The robustness of these criteria was analyzed using
two different priors introduced before. We set uniform (e = 1) and Jeffreys’ priors
(e = 1/2) represented by U (2.1) and J (2.2), respectively.

Alternatively, using the BIC-like approximation, we have log p(y, z) =~ log p(y,
z; ) — (dy/2) log n, where @ is the maximum of p(y, z; ). For large n, ¢ can be
replaced by the MLE $. The integrated classification likelihood criterion with
BIC approximation (ICL-BIC) proposed by Biernacki et al. (2000) chooses S
that minimizes —2log p(y, Z; ) + d, logn, which is the same as

ICL — BIC = —26(3;y) + 2ENC(%, &) + d,, log n. (3.8)

Similarly, using the expected value of z instead of Z, one obtains the inte-
grated complete likelihood criterion with BIC approximation (ICOMPL-BIC)
that chooses S that minimizes

ICOMPL — BIC = —2¢(3;y) + 2EN(&) + d,, log n. (3.9)

4, EXPERIMENTAL DESIGN

A Monte Carlo (MC) study was conducted for the assessment of the per-
formance of these criteria and robustness across experimental conditions. Its
experimental design controls the number of variables and categories, the sample
size, the balance of latent class sizes and the level of separation of the latent
classes. The number of variables (J) was set at levels 5 and 8; and the number of
categories (L;) at levels 2 and 3. From preliminary analyses with L; =2, J =5
and S = 3, we concluded that data sets with a non-singular estimated informa-
tion matrix for the three-latent-class model with sample sizes smaller than 300 are
difficult to generate. Therefore, the number of latent classes is set to two (S = 2)
and the factor sample size (n) assumes the levels: 300, 600, 1200 and 2400. The
latent class sizes were generated using the expression m, = a®~1(35_, a¥~1)~1
with s =1,...,S and a > 1. With a = 1, equal proportions are yield; for larger
values of a, latent class sizes become more unbalanced. For example, for S = 2
and a = 3, latent class sizes are m = (1/4, 3/4). In our MC study, we set three
levels for a: 1, 2 and 3.

Controlling the level of separation of the latent classes is more challenging.

?

Because other factors influencing the level of separation are already controlled,
latent class separation is based exclusively on the separation of the parameters
6. In this paper, we apply a sampling procedure proposed by Dias (2004). The
vector 6 is generated as:
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1. Draw 6;; from the Dirichlet distribution with parameters (41, .. ., qSLj), j=
1,...,J,

2. Draw fs; from the Dirichlet distribution with parameters (66151, - - ., 60151, ),
j=1,...,J,s=2,...,8.

This procedure assumes that parameters 6 of the Naive-Bayes model are sam-
pled from a superpopulation defined by the hyperparameters ¢ and (¢1,...,ér;),
j =1,...,J, and defines a hierarchical (Bayesian) structure. We set (¢1,...,
¢r;) = (L,...,1), which corresponds to the uniform distribution. For s =
2,...,5, we have E(asjl) = 615 and Var(HSﬂ) = b1 (1- 91]'1) /(6+1). With
this procedure, on average, all latent classes are centered at the same parameter
value generated from a uniform distribution (first latent class). The constant
§ > 0 controls the level of separation of the latent classes. As § increases, the
latent class separation decreases as a consequence of the decreasing of the vari-
ance. As § — oo, all latent classes tend to share the same parameters. Based
on results reported in Dias (2004), three levels of § give a good coverage of the
level of separation of the latent classes for this model: 0.1 (well-separated latent
classes), 1 (moderately-separated latent classes) and 10 (weakly-separated latent
classes). These values of § were set in this study.

This MC study sets a 22 x 32 x 4 factorial design with 144 cells. The main
performance measure used is the frequency with which each criterion picks the
correct model. For each data set, each criterion is classified as under-fitting,
fitting or over-fitting, based on the relation between S and the estimated S by
those criteria. }

Special care needs to be taken before arriving at conclusions based on MC
results. In this study, we performed 100 replications within each cell to obtain the
frequency distribution of selecting the true model, resulting in a total of 14400
data sets. To avoid local optima, for each number of latent classes (2 and 3)
the EM algorithm was repeated 5 times with random starting centers, and the
best solution (maximum likelihood value out of those 5 runs) and model selection
results were kept. The EM algorithm ran for 1500 iterations, which was enough

to ensure the convergence for all cells of the design. The programs were written
in MATLAB.

5. RESULTS

Although good results have been reported in the model learning with complete
data information criteria, especially for Gaussian models, the key feature of our
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TABLE 5.1 Results of the Monte Carlo study - percentages of under-fit, fit and over-fit

Factors Criteria
BIC NEC CL CLC ICL ICOMPL
BIC U J BIC U J

Sample size (n)
Under-fit 48.67 65.78 46.89 65.78 71.06 70.94 71.31 82.36 82.36 82.42
300 Fit 51.33 27.83 33.75 25.75 28.89 28.97 28.64 17.50 17.39 17.44
Over-fit 0.00 6.39 19.36 847 006 008 0.06 014 025 0.14
Under-fit 40.39 71.17 56.25 71.17 66.75 66.75 66.97 77.86 77.86 77.86
600 Fit 50.61 25.86 36.36 25.33 33.14 33.14 32.92 21.94 21.94 21.94
Over-fit 0.00 2.97 7.39 350 011 0.11 0.11 0.19 0.19 0.19
Under-fit 35.83 76.44 61.14 76.44 65.86 65.86 65.89 79.61 79.61 79.67
1200 Fit 64.17 23.11 36.28 22.81 34.08 34.08 34.06 20.36 20.36 20.31
Ouver-fit 0.00 044 258 075 0.06 0.06 0.06 0.03 0.03 0.03
Under-fit 31.53 76.72 61.94 76.72 64.44 64.39 64.50 78.39 78.39 78.39
2400 Fit 68.47 23.03 36.97 22.94 35.44 35.50 35.39 21.58 21.58 21.58
Over-fit 0.00 0.25 1.08 033 011 0.11 0.11 0.03 0.03 0.03
Number of variables (J)
Under-fit 42.17 82.47 66.75 82.47 76.82 76.82 76.94 87.76 87.76 87.76
5 Fit 57.83 15.94 28.63 15.78 23.07 23.06 22.94 12.07 12.01 12.07
Over-fit 0.00 1.58 4.63 1.75 0.11 013 0.11 017 0.22 0.17
Under-fit 36.04 62.58 46.36 62.58 57.24 57.15 57.39 71.35 71.35 71.40
8 Fit 63.96 33.97 43.06 32.64 42.71 42.79 42.56 28.63 28.63 28.57
Over-fit 0.00 3.44 10.58 4.78 0.06 0.06 0.06 0.03 0.03 0.03
Number of categories (L)
Under-fit 39.58 72.44 58.75 72.44 67.14 67.14 67.17 77.89 77.89 77.93
2 Fit 60.42 24.61 34.19 24.15 32.69 32.68 32.67 21.92 21.86 21.88
Over-fit 0.00 2.94 7.06 340 017 018 0.17 0.19 0.25 0.19
Under-fit 38.63 72.61 54.36 72.61 66.92 66.83 67.17 81.22 81.22 81.24
3 Fit 61.38 25.31 37.49 24.26 33.08 33.17 32.83 18.78 18.78 18.76
Over-fit 0.00 2.08 815 3.12 0.00 0.00 000 0.00 0.00 0.00
Proportions (a)
Under-fit 36.10 73.29 56.94 73.29 66.06 65.92 66.29 79.52 79.52 79.54
1 Fit 63.90 24.12 35.21 23.33 33.81 33.96 33.58 20.29 20.21 20.27
Over-fit  0.00 2.58 7.85 3.38 013 013 0.13 019 027 0.19
Under-fit 38.96 71.29 55.46 71.29 65.90 65.90 66.02 78.56 78.56 78.60
2 Fit 61.04 26.15 36.71 25.33 34.08 34.08 33.96 21.38 21.38 21.33
Over-fit 0.00 2.56 7.83 3.38 0.02 0.02 0.02 0.06 0.06 0.06
Under-fit 42.25 73.00 57.27 73.00 69.13 69.15 69.19 80.58 80.58 80.60
3 Fit 57.75 24.60 35.60 23.96 30.77 30.73 30.71 19.38 19.38 19.35
Over-fit  0.00 2.40 7.12 3.04 010 0.13 0.10 0.04 0.04 0.04
(continued)
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Factors Criteria
BIC NEC CL CLC ICL ICOMPL
BIC U J BIC U J

Level of separation (§)
Under-fit 3.71 39.19 18.81 39.19 29.02 29.04 29.23 49.69 49.69 49.71
0.1 Fit 96.29 56.33 69.31 54.79 70.83 70.81 70.63 50.04 50.04 50.02
Over-fit 0.00 4.48 11.88 6.02 0.15 0.15 0.15 027 0.27 0.27
Under-fit 16.56 80.83 55.58 80.83 72.06 71.92 72.27 88.98 88.98 89.04
1 Fit 83.44 16.54 34.73 15.88 27.83 27.96 27.63 11.00 10.92 10.94
Over-fit 0.00 2.63 9.69 3.29 0.10 013 010 0.02 010 0.02
Under-fit 97.04 97.56 95.27 97.56 100.00 100.00 100.00 100.00 100.00 100.00
10 Fit 2.96 2.00 3.48 1.96 0.00 0.00 0.00 0.00 0.00 0.00
Over-fit 0.00 0.44 1.25 048 0.00 0.00 0.00 0.00 0.00 0.00
Owverall
Under-fit 39.10 72.53 56.56 72.53 67.03 66.99 67.17 79.56 79.56 79.58
Fit 60.90 24.96 35.84 24.21 32.89 32.92 32.75 20.35 20.32 20.32
Over-fit 0.00 2.51 7.60 3.26 0.08 009 0.08 010 0.12 0.10

results is that those results may not apply to Naive-Bayes models (Table 5.1).
They consistently underperform with success rate no larger than 35.8% (CL) and
they tend to under-fit the correct number of latent classes. By comparing different
approximations to ICL and ICOMPL (based on BIC approximation, uniform
prior and Jeffreys’ prior), we conclude that ICL and ICOMPL are very robust to
the prior setting. It is also observed that classification criteria (MAP(&)) perform
better than complete criteria based on the expected value of z ().

A second objective of the study was the comparison of these criteria across the
factors in the design. The classification likelihood criterion (CL) dominates other
complete data criteria across experimental conditions with exception of well-
separated latent classes, where ICL performs better. Therefore, we will focus on
the performance of BIC and CL across the design factors. Increasing the sample
size almost always improves the performance of BIC and CL. However, these
criteria showed a tendency to underestimate the true number of latent classes
when the sample size decreases. Increasing the number of variables (J) and
categories (L;) mostly reduces the under-fitting, and improves the performance
of BIC and CL. For BIC, more balanced latent classes sizes are associated with
an improved performance. The level of separation of the latent classes plays
an important role in the performance of these criteria. BIC finds the correct
model in 96.3% of the cases for the well-separated situation, but just in 3.0% for
ill-separated latent classes. The same effect can be found for the CL criterion.
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We observe that BIC tends to be extremely conservative for ill-separated latent
classes.

6. CONCLUSION

This paper discussed model selection for Naive-Bayes models under unsuper-
vised learning. Because most of the information criteria are based on asymp-
totics or other type of approximations (e.g., Laplace approximation), most of
these model selection heuristics have to be dealt with care. The extensive Monte
Carlo study allowed their assessment for realistic sample sizes and under differ-
ent design conditions such as: number of variables, number of categories, relative
latent class sizes and the level of separation of the latent classes.

It was shown that Bayesian information criterion (BIC/MDL) outperforms
the complete data information criteria for all the conditions under study, and
the CL criterion outperforms the remaining complete data information criteria.
Indeed, BIC picks the correct model in 60.9% of the simulated data sets, against
just 35.84% for the CL. Therefore, we can conclude that the complete information
criteria tend to overpenalize. We conclude that BIC is the best model selection
criterion for the Naive-Bayes model with a discrete latent variable. However, it
was also shown that the level of separation of components plays a pivotal role in
model selection (number of latent classes) using the BIC.

Our findings are valid only for the Naive-Bayes model with a single discrete
latent variable. Therefore, the conclusions of this study point out the need for
detailed replications of these results for more complex Bayesian networks. On the
other hand, this research shows that the approximations and assumptions under
which these criteria are derived may play an important role that may invalidate
complete information criteria. Moreover, as it has been shown these results are
not sensitive to the prior setting (prior distribution and hyper-parameters), as
it can be seen comparing BIC-, J- and U-type specifications. Future research
should pay more attention to the improvement of the approximations underlying
these criteria for the Naive-Bayes model, in particular from the likelihood side,
where the Laplace approximation may not perform well under multimodality.
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