• 제목/요약/키워드: Late sowing

검색결과 140건 처리시간 0.036초

A New High-Yielding and Late Bolting Welsh Onion Cultivar 'Yeomyeong' (만추대 다수성 파 신품종 '여명')

  • Kim, Cheol-Woo;Lee, Eul-Tai;Choi, In-Hu;Jang, Young-Seok;Suh, Sae-Jung;Hyun, Dong-Yun;Bang, Jin-Ki
    • Korean Journal of Breeding Science
    • /
    • 제43권3호
    • /
    • pp.180-183
    • /
    • 2011
  • 'Yeomyeong', a new welsh onion (Allium fistulosum L.) variety, is developed by the Bioenergy Crop Research Center, NICS, RDA in 2004. This variety, as interspecific $F_1$ hybrid, is developed by a cross between onion (Allium. cepa L.) and welsh onion (A. fistulosum L). The first cross was conducted in 2003 between MOS8, onion male sterile line and G2, welsh onion inbred line. Horticultural and yield characteristics of this hybrid $F_1$ line was investigated in greenhouse for 2 years from 2004 to 2005 with fall cropping cultivation. It has a single pseudostem plant type, anthocyanin-colored pseudostem, and male sterile umbel. It showed intermediate plant type of the maternal parents in overall plant characteristics. 'Yeomyeong' is fall sawing variety and has higher plant height and pseudostem length than that of check variety 'Gumjang'. The yield potential of this variety was about 130.1MT/ha in greenhouse in spring harvseting season. This variety would be adaptable to the fall sowing cultivation in green house.

Application Timings of Insecticides to Control the First Generation of the Asian Corn Borer, Ostrinia furnacalis in Waxy Maize Fields (찰옥수수 포장에서 1세대 조명나방(Ostrinia furnacalis) 방제를 위한 살충제 처리 시기)

  • Jung, Jin Kyo;Seo, Bo Yoon;Jeong, In-Hong;Kim, Eun Young;Lee, Si Woo
    • Korean journal of applied entomology
    • /
    • 제60권4호
    • /
    • pp.431-448
    • /
    • 2021
  • We decided the efficient application timings of organo-synthetic insecticides for controlling the first generation larvae of O. furnacalis through investigations of insect stage-specific densities, damage aspects in maize, and effects of insecticides. A waxy maize cultivar, Ilmichal, was cultivated from April 20 (sowing) to July 26 (harvest, dough stage of maize) in Suwon, 2016. The maximum and 50% cumulative catch dates of the overwintering generation adults in the sex pheromone trapping were May 29 and May 31, respectively. Most of the first generation larvae finished their occurrence till the early reproductive stage of maize. The first generation larvae fed on leaves inside the whorl leaves before tassel and stem development of maize, sequentially moved to tassel and stem, and then moved finally to stem and ear parts. In the results of insecticide applications at different dates, the 9-11 leaf stage (June 10~17) and the 6-7 leaf stage (June 3) of maize were the most efficient application timings for direct spray of Etofenprox EC to maize, and for application of Carbofuran granules onto soil surface, respectively, which resulted in suppression of tunnelling damages. The timings for the two insecticides were 12-19 days and 5 days after the adult maximum catch date, respectively. Those timings after the 50% cumulative adult catch date were advanced 2 days.

Effect of Irrigation Methods on the Growth and Yield of Rice in Desert Climates (사막토양 환경에서 벼 재배시 관개방법에 따른 생육 및 수량 특성)

  • Jung, Ki-Youl;Lee, Sang-Hun;Jeong, Jae-Hyeok;Chun, Hyen-Chung;Chea, Se-Eun;Kim, Sang-Yoon;Jeon, Seung-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • 제67권3호
    • /
    • pp.147-154
    • /
    • 2022
  • This study was conducted by directly sowing Asemi in late April at 30 × 10 cm intervals to determine the optimal irrigation method and irrigation amount to maximize the use of limited agricultural water and to increase the yield when growing rice in a desert climate. Conventional irrigation (Conv.), surface drip irrigation (Sur), subsurface drip irrigation (Sub.), and sprinkler irrigation (Spr.) methods were used. The following amounts of irrigation were tested based on field capacity (0.33 bar): 80% (V/V, FC80), 100% (FC100), and 120% (FC120), and data for 2 years were averaged. The total amount of irrigation by irrigation method was the lowest, at 627 ton/10 a, for Sub. irrigation with the FC80 treatment, which was 60.4% less than the amount of irrigation with the FC120 treatment (1,584 ton/10a). Sub. irrigation with the FC120 treatment gave the greatest amount of rice, at 665 kg/10 a, and this condition obtained a yield of 88.1% (754 kg/10 a) of the yield obtained with the conventional treatment. Therefore, when planting rice in a desert climate, subsurface drip irrigation at 120% of field capacity is considered advantageous to increase water use efficiency and crop yield.

Adaptability Test on Low Organic Soil and Selection of Varieties of Soybean Cultivars

  • Sung-Hyun Yun;Ju-young Choi;Young-Hwan Ju;Min-Young Park;Soo-Jeong Kwon ;Probir Kumar Mittra;Sang-Do Lee ;Tae-Young Hwang ;Sun-Hee Woo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.78-78
    • /
    • 2022
  • Food productivity in North Korea is about 50% lower than in South Korea. In order to increase the productivity of major crops, it is necessary to develop early maturing, disease resistance, and high-yielding varieties and apply them early. Since the late 1990s, North Korea has been actively developing potatoes, rice and com as major food crops, and soybeans are considered important as a protein-supplying crop. Domestic cultivated varieties, which are expected to be most adaptable eco-climatologically, are mainly selected from soil with high nutrient soil. It is necessary to test separately for adaptability in low organic soil. So it is very necessary to apply technology to improve soil improvement through rotational crop selection in the middle and long-term. Therefore, this study was conducted to test the adaptability to low organic soils of domestic cultivars and to select varieties. In 2021 there are twenty two (22) varieties of soybeans were grown in low organic soil at the field of Chungbuk National University. This year twenty two (22) varieties of soybeans were also grown in low organic soil at the field of Chungbuk National University. Sowing was done on June 10, the planting distance was 70cm × 15cm, after opening the cotyledons fully, the soybeans were thinned and leaving two plants per hole. In addition, various types of growth characteristics and quantitative components were investigated to evaluate the adaptability to low organic soil of domestic varieties. This study was conducted to investigate the growth characteristics and quantitative components of soybean varieties grown in low organic soil. The flowering period of 22 varieties of soybeans was about 14 days from July 22 to August 4. The flowers of the beans were white, purple, light purple and the pubescence color was gray and brown where most of them were gray. The highest plant height was up to 130.4 cm and lowest was 20.3 cm, highest stem length was up to 119.5 cm and lowest was 15.3 cm. Highest first pod height (FPH) was up to 34.0 cm and lowest was 3.0 cm. Highest stem diameter was up to 15.76mm and lowest was 1.76 mm. Number of main stem nodes was up to 19 and at least 1. Number of branch was up to 10 and at least 0. The number of pod per plant was up to 121. Bacterial pustule has been spread in soybean field.

  • PDF

An Analysis of the Rice Situation in Nicaragua for Improving National Production.

  • Chang-Min Lee;Oporta Juan;Ho-Ki Park;Hyun-Su Park;Jeonghwan Seo;Man-Kee Baek;Jae-Ryoung Park;O-Young Jeong
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.90-90
    • /
    • 2022
  • Nicaragua is located in Central America, climatic conditions are considered tropical dry forest. Statistics reflex that in Nicaragua exits 24,000 rice farmers. National rice production only covers 73% of the national consumption. It exists two sowing system: irrigation and rainfed. Varieties used in both systems are mid-late maturity (120-135 days), there are 14 released varieties for irrigation, eight for rainfed, and eight landraces used in rainfed. The current breeding system (introduction of lines from Colombia) has increased the national production, however, has some limitation due to the lack of enough variability, reducing the proability of finding good genotypes and therefore the possibility of satisfying 100% of the demand. The purpose of this study was to analyze the problems that must be resolved in the short and long term to improve rice productivity in Nicaragua. In this paper we explain some proposal for an improvement plan. The selection of varieties with high adaptability to various cultivation environmental conditions it is necessary, also to thoroughly manage seed purity to supply certified seeds. In rice cultivation technology, it needs to improve seedling standing and weeding effect by improving soil leveling and water-saving cultivation technology. Also, proper fertilization and planting density must be established in irrigated and rain-fed areas. Furthermore, capacity must be strengthened by collecting and training with the most recent agricultural technology information, as well as by revitalizing the union rather than the individual farmer. It is necessary to develop varieties highly adaptable to the Nicaraguan cultivation environment, as well as to expand irrigation facilities and cultivation technology suitable for weather conditions in rain-fed areas. Last, it is necessary to maintain the consistency of agricultural policy for continuous and stable rice production in response to climate change events such as drought or intermittent heavy rain.

  • PDF

Various Cultural Factors Associated with Disease Development of Garlic White Rot Caused by Two Species of Sclerotium (마늘 흑색썩음균핵병 발생에 관여하는 여러가지 경종적 요인)

  • Kim, Yong-Ki;Kwon, Mi-Kyung;Shim, Hong-Sik;Kim, Tack-Soo;Yeh, Wan-Hae;Cho, Weon-Dae;Choi, In-Hu;Lee, Seong-Chan;Ko, Sug-Ju;Lee, Yong-Hwan;Lee, Chan-Jung
    • Research in Plant Disease
    • /
    • 제11권1호
    • /
    • pp.28-34
    • /
    • 2005
  • This study was conducted to investigate the control possibility of garlic white rot causing severe yield losses of Allium species and cultivars using cultural practices such as optimal sowing date and burial depth, and lime application. Inoculum density in infested field soil was investigated at different soil depth, and that on the diseased plant debris was done. Inoculum density and recovery ratio of white rot pathogen of garlic was highly different between two species of Sclerotium cepivorum forming comparatively small sclerotia and Sclerotium sp. forming comparatively large ones. It was confirmed that S. cepivorum formed more sclerotia on bulbs of garlic than S. sp., and sclerotial recovery of S. cepivorum was higher than that of S. sp. Inoculum density of white rot pathogen in the infested field at garlic seeding period ranged from one to thirteen sclerotia per 30 g soil. Inoculum density of white rot pathogen decreased remarkably with increasing soil depth and above 95% of sclerotia were distributed within 5 cm of soil depth. Disease severity of white rot was higher on slightly planted garlics than deeply-planted ones. Garlic seed bulbs infected by white rot pathogens were confirmed to be one of main inoculum sources of white rot in the field and the disease incidences caused by garlic seed transmission showed big differences among garlic varieties. When nine garlic varieties harvested from infested plots were sown in the field, highly susceptible varieties, ‘Wando’, ‘Daeseo’, ‘Namdo’ and ‘Kodang’ showed high disease incidences, whereas other five varieties were not infected at all. It was confirmed that white rot occurred higher on early-sown garlics, before middle October, than on late-sown ones, after late October. Meanwhile, increasing application rate of lime ranged from 100 to 300 g reduced disease severity of white rot.

Seeding Rate and Planting Date Effects on Forage Performance and Quality of Winter Rye (호밀의 사초특성, 수량 및 품질에 미치는 파종량 및 파종기의 영향)

  • Park, H.S.;Kim, D.A.;Kim, J.D.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • 제19권2호
    • /
    • pp.105-114
    • /
    • 1999
  • This experiment was carried out to determine seeding rate and planting date effects on the forage performance and quality of winter rye(Secale cereale L.) at Suweon in 1997 and 1998. The experiment was arranged in a spilt plot design with three replications. Main plots consisted of three seeding rates; 100, 150, and 200kg/ha. Sub-plots consisted of four planting dates; 5 September, 20 September, 5 October and 20 October. The first heading date of rye was not strongly influenced by planting dates. On a day basis, a 1:15 ratio was existed between heading and planting dates of rye, as a 1-day delay in spring heading date for each 15-day delay in fall planting date. Dry matter content of rye for a seeding rate of 200kg/ha was the lowest of 13.6%, and that for the planting dates was decreased to 15.2, 14.2, 14.3, and 13.8% with delayed seeding (P<0.05). There was an interaction between seeding rate and planting date in dry matter content of rye(P<0.01). Acid detergent fiber (ADF) percentage of rye for the seeding rates was not significant and that for the planting dates was decreased to 32.1, 31.6, 31.6, and 29.3%, as the planting was delayed(P<0.05). There was an interaction between seeding rate and planting date for ADF. Effect of seeding rate and planting date on neutral detergent fiber(NDF) of rye was similar to the observations made on ADF. Crude protein content of rye for the seeding rates was not significant, but that for the planting dates was increased to 17.3, 17.7, 18.2, and 18.9%, as the planting was delayed(P<0.05). In vitro dry matter digestibility(IVDMD) of rye for the seeding rates was not significant, but that for the planting dates was increased to 77.5, 80.6, 80.9, and 80.9%, as the planting was delayed(P<0.05). Dry matter yield of rye for a seeding rate of 100 kg/ha was the highest of 9,059 kg/ha, and that for a seeding rate of 200 kg/ha was the lowest of 7,647 kg/ha(P<0.01). In this experiment, the highest forage yield(8,945 kg/ha) was obtained when planting was completed by early October(5 October), with yield decreased as planting was delayed until 20 October (7,249 kg/ha)(P<0.01). This trend was also observed for the crude protein(CP) and in vitro digestible dry matter(IVDDM) yields of rye. A significant interaction between seeding rate and planting date for the dry matter yield was occurred(P<0.01). Based on the results of this experiment, it appears that the forage dry matter yield of rye could be enhanced by sowing from 20 September to 5 October under upland condition in the middle plain area of Korea. The seeding rates from 100 to 150 kg/ha and that of 200 kg/ha would be suitable for the early-fall and late fall sowing, respectively.

  • PDF

Studies on the selection in soybean breeding. -II. Additional data on heritability, genotypic correlation and selection index- (대두육종에 있어서의 선발에 관한 실험적연구 -속보 : 유전력ㆍ유전상관, 그리고 선발지수의 재검토-)

  • Kwon-Yawl Chang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • 제3권
    • /
    • pp.89-98
    • /
    • 1965
  • The experimental studies were intended to clarify the effects of selection, and also aimed at estimating the heritabilities, the genotypic correlations among some agronomic characters, and at calculating the selection index on some selective characters for the selection of desirable lines, under different climatic conditions. Finally practical implications of these studies, especially on the selection index, were discussed. Twenty-two varieties, determinate growing habit type, were selected at random from the 138 soybean varieties cultivated the year before, were grown in a randomized block design with three replicates at Chinju, Korea, under May and June sowing conditions. The method of estimating heritabilities for the eleven agronomic characters-flowering date, maturity date, stem length, branch numbers per plant, stem diameter, plant weight, pod numbers per plant, grain numbers per plant and 100 grain weight, shown in Table 3, was the variance components procedures in a replicated trial for the varieties. The analysis of covariance was used to obtain the genotypic correlations and phenotypic correlations among the eight characters, and the selection indexes for some agronomic characters were calculated by Robinson's method. The results are summarized as follows: Heritabilities : The experiment on the genotype-environment interaction revealed that in almost all of the characters investigated the interaction was too large to be neglected and materially affected the estimates of various genotypic parameters. The variation in heritability due to the change of environments was larger in the characters of low heritability than in those of high heritability. Heritability values of flowering date, fruiting period (days from flowering to maturity), stem length and 100 grain weight were the highest in both environments, those of yield(grain weight) and other characters were showed the lower values(Table 3). These heritability values showed a decreasing trend with the delayed sowing in the experiments. Further, all calculated heritability values were higher than anticipated. This was expected since these values, which were the broad sense heritability, contain the variance due to dominance and epistasisf in addition to the additive genetic variance. Genotypic correlations : Genotypic correlations were slightly higher than the corresponding phenotypic correlations in both environments, but the variation in values due to the change of environment appeared between grain weight and some other characters, especially an increase between grain weight and flowering date, and the total growing period(Table 6). Genotypic correlations between grain weight and other characters indicated that high seed yield was genetically correlated with late flowering, late maturity, and the other five characters namely branch numbers per plant, stem diameter, plant weight, pod numbers per plant and grain numbers per plant, but not with 100 grain weight of soybeans. Pod numbers and grain numbers per plant were more closely correlated with seed yields than with other characters. Selection index : For the comparison and the use of selection indexes in the selection, two kinds of selection indexes were calculated, the former was called selection index A and the later selection index B as shown in Table 7. Selection index A was calculated by the values of grain weight per plant as the character of yield(character Y), but the other, selection index B, was calculated by the values of pod numbers per plant, instead of grain weight per plant, as the character of yield'(character Y'). These results suggest that selection index technique is useful in soybean breeding. In reality, however, as the selection index varies with population and environment, it must be calculated in each population to which selection is applied and in each environment in which the population is located. In spite of the expected usefulness of selection index technique in soybean breeding, unsolved problems such as the expense, time and labor involved in calculating the selection index remain. For these reasons and from these experimental studies, it was recognized that in the breeding of self-fertilized soybean plants the selection for yield should be based on a more simple selection index such as selection index B of these experiments rather than on the complex selection index such as selection index A. Furthermore, it was realized that the selection index for the selection should be calculated on the basis of the data of some 3-4 agronomic characters-maturity date(X$_1$), branch numbers per plant(X$_2$), stem diameter(X$_3$) and pod numbers per plant etc. It must be noted that it should be successful in selection to select for maturity date(X$_1$) which has high heritability, and the selection index should be calculated easily on the basis of the data of branch numbers per plant(X$_2$), stem diameter(X$_3$) and pod numbers per plant, directly after the harvest before drying and threshing. These characters should be very useful agronomic characters in the selection of Korean soybeans, determinate growing habit type, as they could be measured or counted easily thus saving time and expense in the duration from harvest to drying and threshing, and are affected more in soybean yields than the other agronomic characters.

  • PDF

Double Cropping Productivity of Main Whole-Crop Silage Rice and Winter Feed Crops in the Central Plains of Korea (중부 평야지에서 사료용 벼와 주요 동계사료작물 이모작 시 생산성)

  • Ahn, Eok-Keun;Jeong, Eung-Gi;Park, Hyang-Mi;Jung, Kuk-Hyun;Hyun, Ung-Jo;Ku, Ja-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • 제64권4호
    • /
    • pp.311-322
    • /
    • 2019
  • In order to establish an optimal double cropping system to obtain the maximum annual quantity, we investigated the annual productivity of whole-crop silage (WCS) rice, Jowoo (Jw), Yeongwoo (Yw), and Mogwoo (Mw), and winter feed crops (WFC), Italian ryegrass (IRG), Greenfarm (GF), rye Gogu (GU), and triticale Joseong (JS), in paddy fields of the central plains of Korea. From 2016 to 2019, each crop was subjected to two standard cultivation methods: WCS rice and WFC optimal. Using the WCS optimal mode, the average dry matter yield (DMY) of WCS rice, early flowering Jw, was 15.8 tons/ha and 21.0 for the mid-late heading Yw; there was no significant difference compared to the 19.2 tons/ha late-flowering Mw (p<0.01). The WFC were not significantly different between GF (3.2 tons/ha) and GU (4.5) sown on September 23rd, while JS was the highest at 12.6 tons/ha (p<0.001). There was a significant difference in the order of JS (16.6 tons/ha) > GF (10.5) > GU (4.7)(p<0.001) sown on October 11th. For JS sown on October 31st, the DMY was 11.8 tons/ha, which was significantly higher than that of the other two crops (p<0.05). Except for rye GU, DMY was the highest when sown on October 11th. For WFC optimal mode, the average DMY of JS was the highest at 18.3 tons/ha, which was significantly different from that of GF (10.9) and GU (9.6) (p<0.001). The DMY of WCS rice transplanted on May 10th was the highest at 23.0 tons/ha in Mw, which was not significantly different from that of Yw (21.4) but significantly different from that of Jw (15.9) (p<0.05). On transplanting on May 25th, the DMY of Mw was the highest at 24.2 tons/ha; this was not significantly different from that of Yw (20.7), but it was significantly different from that of Jw (18.6) (p<0.05). When transplanted on June 11th, the DMY was 21.3 tons/ha in Yw, which was significantly higher than the DMY of other two cultivars, Jw and Mw (p<0.05). For the WCS rice-WFC double cropping, the total annual DMY was 33.6 tons/ha with the combination of the WCS rice, Yw, and the triticale JS for WCS optimal mode. Meanwhile, the total annual DMY was 39.6 tons/ha with the combination of the triticale JS and the WCS rice, Yw, for WFC optimal mode. In conclusion, the strategies for obtaining the maximum yield of high-quality forage for WCS rice-WFC, WFC-WCS rice double cropping are as follows: 1) cultivation centered on the optimal mode of WFC, and 2) sowing the WFC, triticale JS in mid-October, harvesting the crops around the end of May and transplanting the WCS rice, Yw, in early June to obtain the maximum DMY of 39.6 tons/ha.

A New High Grain Yielding Forage Rye Cultivar, "Seedgreen" (종자 생산량이 많은 호밀 신품종 "씨드그린")

  • Han, Ouk-Kyu;Hwang, Jong-Jin;Park, Hyung-Ho;Kim, Dea-Wook;Oh, Young-Jin;Park, Tae-Il;Ku, Ja-Hwan;Kwon, Young-Up;Kweon, Soon-Jong;Park, Kwang-Geun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • 제35권2호
    • /
    • pp.105-111
    • /
    • 2015
  • "Seedgreen" (Secale cereal L.), a new rye cultivar was developed by National Institute of Crop Science (NICS), RDA in 2013. It was developed from an open pollination from within 10 rye varieties or lines including "Chochun" in 1995. The line "SR95POP-S1-140-9-1-3-7-5-3" was selected for its excellent agronomic appearance, and was placed in yield trials for three years from 2008 to 2010. The new cultivar was designated "Homil50" and was placed in regional yield trials at the five locations around Korea from 2011 to 2013, during which time the name "Seedgreen" was given. This cultivar is an erect plant type and of a long size, with a dark-green leaf color, a yellowish-white colored, medium-diameter culm, and a brown-colored, medium-size grain. The heading and maturation dates of Seedgreen were April 22 and June 16, which were 3 days and 2 days earlier than that of "Gogu", respectively. Seedgreen also showed better winter hardiness and a greater resistance to lodging and wet injury compared to those of the check cultivar. Over three years, the average dry matter yield of Seedgreen was 8.3 ton $ha^{-1}$ (fresh yield = 39.8 ton $ha^{-1}$), which was harvested in late April and was lower than that of the check cultivar Gogu. The seed productivity of Seedgreen was approximately 4 ton $ha^{-1}$, which was 16 % more than that of the check. Seedgreen was higher to than Gogu in term of protein content (10.5% and 9.7%, respectively), total digestible nutrients (TDN) (58.3% and 57%, respectively), and TDN yield $ha^{-1}$ (4.81 ton and 4.77 ton, respectively). This cultivar is recommended as a fall sowing crop in areas where the average daily minimum-mean temperatures are higher than $-12^{\circ}C$ in January, and as a winter crop for whole-crop forage before the planting of rice or green manure around Korea.