• Title/Summary/Keyword: Lasing

Search Result 195, Processing Time 0.029 seconds

Fabrication optimization of Fiber Bragg gratings (광섬유 브래그 격자(Fiber Bragg grating) 제작과 제작 조건에 따른 특성 향상)

  • Choi, Bo-Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.7
    • /
    • pp.1680-1686
    • /
    • 2010
  • Optical fiber Bragg grating to have the lowest transmitivity at 1549.9nm wavelength was fabricated using a Gaussian distributed KrF Eximer laser of 248nm lasing wavelength and a phase mask of 1.072um period. The proper alignment of an optic setup to fabricate fiber gratings was investigated and the reproductivity of the grating fabrication was examined using the obtained optimum fabrication condition in this experiment.

주기적으로 극성이 반전된 ZnO 구조의 형성 및 응용

  • Park, Jin-Seop;Hong, Sun-Gu;Jang, Ji-Ho;Ha, Jun-Seok;Yao, Takafumi
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.24-24
    • /
    • 2011
  • ZnO 직접 천이형의 와이드밴드갭 화합물 반도체로써 높은 엑시톤 결합 에너지를 가짐으로 해서 광전자나 광학디바이스로의 넓은 응용범위를 갖고 있다. 최근들어 ZnO의 비선형 광학 특성이 보고 됨으로써 새로운 광학 재료로서의 연구도 기대되고 있다. 본연구에서는 새로운 주기적 반전 구조를 제안함으로 해서 극성을 가지는 화합물 반도체의 비선형 광학 디바이스로의 응용 범위를 넓히고자 한다. ZnO는 Wurtzite 구조를 가짐으로 해서 성장 방향으로 Zn-극성 및 O-극성을 가지게 된다. 이런 자연 발생적인 극성에 의해 물리적, 화학적, 광학적 특성들이 바뀌게 됨으로, 극성의 제어는 재료의 특성을 극대화 시키기 위해 아주 중요한 항목이 되어 있습니다. 본 연구에서는 손쉽고 재현성이 확보되는 방법으로써, CrN 와 Cr2O 3의 완충층을 제안하여 ZnO 극성의 제어를 이루었고, 제안된 극성 제어 방식을 이용하여 주기적으로 Zn-극성과 O-극성이 배열된 구조(PPI 구조)를 형성 하였다. 패터닝과 재성장 방법을 통해서 다양한 구조와 사이즈의 1D, 2D PPI ZnO를 제작하는데 성공하였다. 주기적인 반전구조의 제작을 확인하기 위해 PRM(piezo response miscosocpy)이라는 방법을 통하여 주기적 극성 선택성을 확인하였으며, TEM과 PL 분석법을 통하여 구조적 광학적 특성을 분석하였다. 새롭게 제안된 극성 제어 방식을 이용하여 제작된 PPI 구조를 이용하여 비선형 광학소자로의 응용성을 확인하였다. 본발표에서는 PPI ZnO 구조의 형성방법, 분석 및 응용에 대한 제안과 결과가 논의될 것이다.

  • PDF

Tunable Photonic Microwave Delay Line Filter Based on Fabry-Perot Laser Diode

  • Heo, Sang-Hu;Kim, Junsu;Lee, Chung Ghiu;Park, Chang-Soo
    • Current Optics and Photonics
    • /
    • v.2 no.1
    • /
    • pp.27-33
    • /
    • 2018
  • We report the physical implementation of a tunable photonic microwave delay line filter based on injection locking of a single Fabry-Perot laser diode (FP-LD) to a reflective semiconductor optical amplifier (RSOA). The laser generates equally spaced multiple wavelengths and a single tapped-delay line can be obtained with a dispersive single mode fiber. The filter frequency response depends on the wavelength spacing and can be tuned by the temperature of the FP-LD varying lasing wavelength. For amplitude control of the wavelengths, we use gain saturation of the RSOA and the offset between the peak wavelengths of the FP-LD and the RSOA to decrease the amplitude difference in the wavelengths. From the temperature change of total $15^{\circ}C$, the filter, consisting of four flat wavelengths and two wavelengths with slightly lower amplitudes on both sides, has shown tunability of about 390 MHz.

Wavelength Tuning Mechanism in Fiber Ring Laser Tuned by Polarization Control (편광제어를 이용한 파장가변 고리형 광섬유레이저에서의 파장가변 메카니즘)

  • Kim, Chang-Bong;Kim, Ik-Sang
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.3
    • /
    • pp.174-184
    • /
    • 2001
  • Wavelength tunable fiber ring laser can be tuned by causing a resonance on the optical path having the least loss which is controlled by a polarization adjustment. It is observed that lasing wavelengths having 1 nm FSR(Free Spectral Range) can be tuned over the range of 1540~1560 nm when a polarization controller and an intra-cavity polarizer are adjusted. The tuning mechanism can be expected by analyzing the characteristics of the laser output using an optical path model and the concept of a birefringence loss. It is found that the constructive interference between longitudinal modes of different optical paths may cause wavelength tuning in the fiber ring laser.

  • PDF

Electro-controllable omni-directional laser emissions from a helical polymeric network composite film

  • Jang, Won-Gun;Park, Byoung-Choo;Kim, Min-A;Kim, Sun-Woong;Kim, Yun-Ki;Choi, Eun-Ha;Seo, Yoon-Ho;Cho, Guang-Sup;Kang, Seung-Oun;Takezoe, Hideo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.883-886
    • /
    • 2008
  • In optical information technology, an electro-controllable Photonic Band Gap (PBG) in a photonic crystal (PC) material is potentially useful for the manipulation of light. Despite a great deal of research on PBGs, the reliable use of electro-active PBG material systems is restricted to only a few cases because of the complex and limiting nature of the structures involved. Here, we propose a PBG system that uses a liquid crystal (LC) polymer composite. The composite is made of nematic LCs (NLCs) embedded in polymeric helical networks of photo-polymerized cholesteric LCs (CLCs). The composite film shows a large field-induced reversible color shift over 150 nm of the reflection band, due to the reorientational undulation of the helical axis, similar to the Helfrich effect.

  • PDF

High Power Laser Driven Shock Compression of Metals and Its Innovative Applications (고 출력 레이저에 의한 충격파 현상 연구 및 응용)

  • Lee, Hyun-Hee;Gwak, Min-Cheol;Choi, Ji-Hee;Yoh, Jai-Ick
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.11
    • /
    • pp.832-840
    • /
    • 2008
  • Ablation occurs at irradiance beyond $10^9\;W/cm^2$ with nanosecond and short laser pulses focused onto any materials. Phenomenologically, the surface temperature is instantaneously heated past its vaporization temperature. Before the surface layer is able to vaporize, underlying material will reach its vaporization temperature. Temperature and pressure of the underlying material are raised beyond their critical values, causing the surface to explode. The pressure over the irradiated surface from the recoil of vaporized material can be as high as $10^5\;MPa$. The interaction of high power nanosecond laser with a thin metal in air has been investigated. The nanosecond pulse laser beam in atmosphere generates intensive explosions of the materials. The explosive ejection of materials make the surrounding gas compressed, which form a shock wave that travels at several thousand meters per second. To understand the laser ablation mechanism including the heating and ionization of the metal after lasing, the temporal evolution of shock waves is captured on an ICCD camera through laser flash shadowgraphy. The expansion of shock wave in atmosphere was found to agree with the Sedov's self-similar spherical blast wave solution.

Construction and operational characteristics of a nitrogen lawer system employing a multiplex spark gap (다극형 스파크 간격을 사용한 질소레이저의 제작과 그 동작 특성)

  • 양준묵;김윤주;추한태;이치원
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.1
    • /
    • pp.28-36
    • /
    • 1996
  • We have constructed and studied a laser system which consists of a multiplex spark gap with 8 couples of spark gaps and a multiple parallel plate capacitor type Blumlein transmission line circuit. In this laser system, the length of the laser tube, the length of the multiplex spark gap and the total thickness of the transmission line circuit are chosen to be 520 mm. The experimental results show that one couple of spark gaps cannot give a uniform and complete lasing through the whole laser tube. All the more, a multiplex spark gap could not perform completely and synchronously. However, a multiplex spark gap in found to contribute to the increase of laser output power and the laser has performed the best when the location is three quarters of the laser tube length.

  • PDF

Phenomenological Nonlinear Gain Saturation Effect on the Noise Characteristics of a Multi-electrode DBR Laser with Continuous Frequency Tuning (연속 파장 가변시 현상론적인 비선형 이득포화효과가 다전극 DBR 레이저의 잡음특성에 미치는 영향)

  • 이석목;최원준;한일기;김회종;우덕하;김선호;이정일;감광남;박홍이
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.2
    • /
    • pp.135-141
    • /
    • 1995
  • Phenomenological nonlinear gain saturation effect on the noise characteristics of a multi-electrode DBR laser, when the lasing wavelength changes continuously, is presented theoretically. Using the optical transmission line theory, noise characteristics reliant on output power are analyzed by taking into account both the spontaneous enhancement factor K due to the distribution of the spontaneous emission along the active cavity and the nonlinear gain saturation effect. Spontaneous emission rate was increased due to an increase in injected current into the passive section, which in turn lead to increase in relative intensity noise (RIN) and frequency noise. Phenomenological nonlinear gain saturation was found to have significant effect on RIN and frequency noise characteristics. However. Iinewidth was found to decrease due to a phenomenological nonlinear gain saturation effect. ffect.

  • PDF

Effect of Grating Structures and Mirror Positions on Characteristics of 1.55$\mu\textrm{m}$ DFB Lasers (1.55 $\mu\textrm{m}$ DFB 레이저의 특성에 미치는 Grating구조와 Mirror 위치의 영향)

  • Kwon, Kee-Young
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.9
    • /
    • pp.128-138
    • /
    • 1994
  • In 1.55.mu.m DFB lasers with two non-AR mirrors, I have analyzed the effect of the sturctures of indes and/or gain gratings and mirror positions on the threshold gains, the lasing frequencies, and the beam profiles in longitudinal direction of lasers. I have obtained the optimum condition of static characteristics that ${\Delta}{\Omega}$(the phase difference betweeen index grating and gain grating is 3${\pi}$/4, $({\kappa}L)_{i}$=4~6 in case of $({\kappa}L)_{i}$=0.9 and $({\kappa}L)_{i}$=3~5 in case of $({\kappa}L)_{i}$=0.7. The modal selectivity and intensity uniformity of this optimum condition are 2~2.5 times better than those of the gain-coupled DFB lasers ${\Delta}{\Omega}$=0). The gain-coupled DFB lasers${\Delta}{\Omega}$=0) have 10$^{10) times better modal selectivity and intensity uniformity than the loss-coupled DFB lasers(TEX>${\Delta}{\Omega}$=${\pi}$).

  • PDF

Modeling of high energy laser heating and ignition of high explosives (고출력 레이저에 의한 가열과 폭약의 점화 모델링)

  • Lee, Kyung-Cheol;Kim, Ki-Hong;Yoh, Jai-Ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.3
    • /
    • pp.1-8
    • /
    • 2008
  • We present a model for simulating high energy laser heating of metal for ignition of energetic materials. The model considers effect of ablation of steel plate with long laser pulses and continuous lasers of several kilowatts and the thermal response of well-characterized high explosives for ignition. Since there is enough time for the thermal wave to propagate into the target and to create a region of hot spot in the high explosives, electron thermal diffusion of ultra-short (femto- and pico-second) lasing is ignored; instead, heat diffusion of absorbed laser energy in the solid target is modeled with thermal decomposition kinetic models of high explosives. Numerically simulated pulsed-laser heating of solid target and thermal explosion of RDX, TATB, and HMX are compared to experimental results. The experimental and numerical results are in good agreement.