• Title/Summary/Keyword: Laser-treated implant

Search Result 41, Processing Time 0.021 seconds

Esthetic treatment of gingival melanin hyperpigmentation with a Nd:YAG laser and high speed rotary instrument: comparative case report

  • Ko, Hyuk-Jin;Park, Jin-Woo;Suh, Jo-Young;Lee, Jae-Mok
    • Journal of Periodontal and Implant Science
    • /
    • v.40 no.4
    • /
    • pp.201-205
    • /
    • 2010
  • Purpose: The purpose of this study was to evaluate the clinical effectiveness of and patient's satisfaction with treatment of gingival melanin hyperpigmentation with a Nd:YAG laser and a high speed rotary instrument. Methods: Three patients with melanin hyperpigmentation in the anterior parts of the gingiva were chosen for this case study. Clinical photographs were taken at the preoperative state and three patients were treated under local anesthesia. In the maxilla, the gingival deepithelization was conducted with a high speed diamond bur, whereas, in the mandible with a Nd:YAG laser. Clinical photographs were taken immediately after the procedures and at the 1st, 2nd, and 4th week to evaluate clinical color changes. A week after the procedure, the patients filled out a questionnaire about any pain or discomfort. At the 4th week after the procedure, the patients filled out questionnaires about esthetic aspects of the results of treatment. Results: In all cases, both anterior gingival areas were depigmented with satisfaction and the patients did not complain of severe pain or discomfort. At the 1st week of healing, the gingiva showed moderate to fast epithelization. Two weeks after the procedure, clinically, the gingiva showed almost complete healing. Four weeks after the procedure, there was significant improvement in gingival melanin hyperpigmentation. Conclusions: The Nd:YAG laser and the high speed rotary instruments seem to be effective for the esthetic treatment of gingival melanin hyperpigmentation.

A Scanning electron microscopic study of the dentinal tubule obliteration effect by the different irradiations of a pulsed Nd:YAG laser (Nd:YAG 레이저의 조사방법의 차이에 따른 상아세관 폐쇄효과에 관한 주사전자현미경적 연구)

  • Ko, Eun-Young;Kim, Song-Wook;Yum, Chang-Yup;Kim, Byoung-Ock;Han, Kyung-Yoon
    • Journal of Periodontal and Implant Science
    • /
    • v.27 no.4
    • /
    • pp.829-844
    • /
    • 1997
  • Dentin hypersensitivity must be one of the most frequent postoperative complaints in periodontal patients. Obliterating the open dentinal tubules or decreasing the diameter of their orifices would, therefore, be an objective of treatment for hypersensitive teeth. The purpose of this study was to evaluate the effect of a pulsed Nd:YAG laser irradiation on obliteration of dentinal tubules and to determine any difference according to irradiation methods. The 45 posterior teeth that had been extracted due to periodontal disease were initially treated with tetracycline HCI(100 mg/ml, 4 min.) to remove the smear layer after root planing. The root surfaces were then irradiated by a pulsed Nd:YAG laser(EL.EN.EN060, Italy) by different laser beam spot size and different exposure condition: ${\cdot}$ group 1: irradiated group by small spot(beam diameter=1mm, lW, 2 sec) ${\cdot}$ group 2: irradiated group by large spot(beam diameter=10mm, 1W, 200 sec) ${\cdot}$ group 3: irradiated group by gradual increase of watt (from 0.3W to 1.0W), beam diameter=4mm ${\cdot}$ group 4: irradiated group by fixed watt(1.0 W), beam diameter=4mm ${\cdot}$ control group: no irradiation but root planing and tetracycline HCI conditioning only. Additionally, the specimens were retreated with tetracycline HCI(100mg/ml, 4min.) to evaluate the stability of obliteration effect by Nd:YAG laser. Specimens were examined under the scanning electron microscope(JEOL, JSM-840A, Japan). Photomicrographs were taken at ${\times}4,000$ magnification and were analyzed statistically. The results were as follows: l. Scanning electron micrographs of root surface treated by tetracycline HCI alone(control group) showed widened, funnel-shaped dentinal tubules, while those of the root surface irradiated by various methods showed partially or completely obliterated dentinal tubules and various surface alterations, eg, flat, multiple pitted, melted and resolidified surface at the same energy density. 2. There was no significant difference in the obliteration effect of dentinal tubules between group 1 and group 2, and between group 3 and group 4(p>0.05). 3. The obliteration effect of dentinal tubules by a Nd:YAG laser irradiation was relatively stable to tetracycline HCI. The results demonstrate that a pulsed Nd:YAG laser irradiation within 1.0W, regardless of irradiation methods, can obliterate dentinal tubules effectively.

  • PDF

Microgrooves on titanium surface affect peri-implant cell adhesion and soft tissue sealing; an in vitro and in vivo study

  • Lee, Hyo-Jung;Lee, Jaden;Lee, Jung-Tae;Hong, Ji-Soo;Lim, Bum-Soon;Park, Hee-Jung;Kim, Young-Kwang;Kim, Tae-Il
    • Journal of Periodontal and Implant Science
    • /
    • v.45 no.3
    • /
    • pp.120-126
    • /
    • 2015
  • Purpose: With the significance of stable adhesion of alveolar bone and peri-implant soft tissue on the surface of titanium for successful dental implantation procedure, the purpose of this study was to apply microgrooves on the titanium surface and investigate their effects on peri-implant cells and tissues. Methods: Three types of commercially pure titanium discs were prepared; machined-surface discs (A), sandblasted, large-grit, acid-etched (SLA)-treated discs (B), SLA and microgroove-formed discs (C). After surface topography of the discs was examined by confocal laser scanning electron microscopy, water contact angle and surface energy were measured. Human gingival fibroblasts (hGFs) and murine osteoblastic cells (MC3T3-E1) were seeded onto the titanium discs for immunofluorescence assay of adhesion proteins. Commercially pure titanium implants with microgrooves on the coronal microthreads design were inserted into the edentulous mandible of beagle dogs. After 2 weeks and 6 weeks of implant insertion, the animal subjects were euthanized to confirm peri-implant tissue healing pattern in histologic specimens. Results: Group C presented the lowest water contact angle ($62.89{\pm}5.66{\theta}$), highest surface energy ($45{\pm}1.2mN/m$), and highest surface roughness ($Ra=22.351{\pm}2.766{\mu}m$). The expression of adhesion molecules of hGFs and MC3T30E1 cells was prominent in group C. Titanium implants with microgrooves on the coronal portion showed firm adhesion to peri-implant soft tissue. Conclusions: Microgrooves on the titanium surface promoted the adhesion of gingival fibroblasts and osteoblastic cells, as well as favorable peri-implant soft tissue sealing.

MECHANICAL PROPERTIES OF TITANIUM CONNECTORS TREATED BY VARIOUS WELDING TECHNIQUES (용접방법에 의한 타이타늄 연결부의 기계적 성질에 관한 연구)

  • Lee, Soo-Young;Chang, Ik-Tae;Heo, Seong-Joo;Yim, Soon-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.5
    • /
    • pp.545-566
    • /
    • 1999
  • The use of pure titanium and titanium alloys have been increased recently in fixed, removable prosthodontics and implant fields as a framework. But when they were used for superstructures of implant or metal framework of removable prosthesis, welding is necessary to reconnect the fracture site to control the casting distortions. To overcome the difficulties in soldering the titanium due to high oxidation property, much effort have been devoted. In this study, some of mechanical properties were compared between pure titanium and Ti-6Al-4V alloy by using after welding, electron beam welding technique and tungsten arc welding. Mechanical properties such as tensile strength, yield strength, elongation and microhardness were measured. And, in order to compare the effect of welding site and surrounding metal tissue according to the welding condition, SEM photographs were taken and element distribution was observed by Wave Dispersion Spectroscopy. Through analyses of the data, following results were obtained; 1. In items such as tensile strength, yield strength and elongation according to the welding techniques of pure titanium, only tungsten arc welded group showed significant lower value than other groups(P<0.05). 2. In items such as tensile strength and yield strength according to the welding techniques of Ti-6Al-4V alloy, control group and tungsten arc welded group showed significant difference among all the groups(P<0.05). 3. Ti-6Al-4V alloy exhibited significantly greater elongation than control group when the laser welding method and electron beam welding method were used, and elongation showed increasing tendency. 4. Pure titanium specimens exhibited increasing tendency of microhardness regardless of the weld-ing technique applied, and especially tungsten arc welded group demonstrated a great increase of microhardness than parent metal. 5. There was no hardness change in laser welded group and electron beam welded group of Ti-6Al-4V alloy, but in tungsten arc welded group, hardness changed greatly from parent metal to weld seam. 6. Through the metallographic examination and scanning electron microscopy, laser welding caused central fusion and recristallizations were formed and tungsten arc welding caused localized fusion to 0.3-0.7mm from the surface.

  • PDF

Effect of NaF iontophoresis and Nd:YAG laser irradiation on the abrasion-resistance of root surface (불화나트륨 이온도포와 Nd:YAG laser 조사가 치근면 내마모성에 미치는 영향)

  • Kim, Chin-Dok;Yum, Chang-Yup;Kim, Song-Uk;Kim, Byung-Ock;Han, Kyung-Yoon
    • Journal of Periodontal and Implant Science
    • /
    • v.27 no.4
    • /
    • pp.819-828
    • /
    • 1997
  • The purpose of this study was to evaluate the abrasion-resistance of root surface after NaF iontophoresis, Nd:YAG laser irradiation and combined treatment 50 anterior teeth with flat interproximal root surface that had been extracted due to periodontal destruction were selected. All teeth were treated by the same procedure as conventional periodontal root treatment, such as scaling and root planing, root conditioning with tetracycline HCI(lOOmg/ml, 5min). The pre-treatment weight of each tooth was measured by a dial scale(SHIMADEU Co, LIBROR EB-220HU, capacity 220.000 g, Japan). All teeth were divided into 5 groups as follows: Nd:YAG laser irradiation(group 1, 1 W, 100 mJ, 10Hz, fiberoptic-root surface distance=5mm, $10\;sec.{\times}6times$, EL.EN.EN060, Italy): NaF iontophoresis(group 2, $150{\mu}A$, 4 min}: Nd:YAG laser irradiation following NaF iontophoresis(group 3): NaF iontophoresis following Nd:YAG laser irradiation(group 4): No treatment(control group). Electric toothbrushing (Oral-B, Brown Co, Germany) was conducted during 1 hour($lO\;min.{\times}6\;times$). Subsequently post-treatment weight was remeasured by the same method as pre-treatment weight measurement. The difference of abrasion rate among all groups was statistically analyzed by ANOVA(SAS program). Following results were obtained: 1. The abrasion rate was significantly lower in Nd:YAG laser irradiation group than NaF iontophoresis group(p < 0.001). 2. The abrasion rate was significantly lower in combined groups of Nd:YAG laser irradiation and NaF iontophoresis than either Nd:YAG laser irradiation group or NaF iontophoresis group(p < 0.001). 3. There was no significant difference in abrasion rate according to application order in the combined groups(p > 0.05). 4. The abrasion rate was significantly lower in all experimental groups than control group(p < 0.001). The results suggest that combined treatment of Nd:YAG laser irradiation and NaF iontophoresis on exposed root surface after periodontal therapy can enhance the abrasion-resistance of root surface and may inhibit the root caries development.

  • PDF

Effects of the root conditioning treatments after Nd:YAG laser irradiation on in vitro human gingival fibroblast attachment to root surfaces (Nd:YAG 레이저조사 후 치근의 처치방법들이 치근면 치은섬유아세포부착에 미치는 영향에 관한 연구)

  • Moon, Hye-Seong;Lim, Kee-Jung;Kim, Byung-Ock;Han, Kyung-Yoon
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.3
    • /
    • pp.701-713
    • /
    • 1996
  • The purpose of this study was to evaluate the biocompatibility of the Nd:YAG lased root surface followed by root planing and/or tetracyline-HCI(T.C.-HCI) conditioning. $30,4mm{\times}4mm$ root segments were obtained from unerupted third molars and 21, periodontally involved root segments. The treatment groups were as follows : (1) healthy root cementum surface groups : 1) control(non-treated group), 2) lased only, 3) lased/root planed, and 4) lased/T.C.-HCI. (2) diseased root cementum surface groups : 1) control(root planed only), 2) lased/root planed, and 3) lased/root planed/T.C.-HCI. The specimens were treated with a Nd:YAG laser using a $320{\mu}m$ noncontact optic fiber handpiece with an energy setting of 1.5W($114.6J/cm^2$), 2.0W($152.9J/cm^2$), 5.0W($382J/cm^2$) for one minute. The fiber was held perpendicular to the petri dish(NUNC) 2cm apart in an attempt to expose the entire root segments equally. Human gingival fibroblasts were cultured from explants of normal interdental gingival tissue obtained during third morlar extraction. The attachment assay was performed with third-generation fibroblasts. The numbers of gingival fibroblasts attached to the root surface were counted on each specimen under the light microscope, and were statistically analyzed by the oneway ANOVA followed by Tukey's test in SPSS/PC+programs. The results were as follows : 1) In healthy root cementum surfaces, lased/root planed groups exhibited a significantly increased fibroblast attachment compared to controls, lased only, and lased/T.C.-HCI groups(p<0.05), 2) In diseased root cementum surfaces, laser treatment followed by root planing and/or T.C.HCl groups exhibited a increased tendency of fibroblast attachment compared to root planed only group. The results suggest that laser treatment followed by root planing and/or T.C.-HCl would appear necessary so as to render the root surface biocompatible.

  • PDF

Evaluation of titanium surface properties by $Nd:YVO_4$ laser irradiation: pilot study ($Nd:YVO_4$ 레이저 조사에 따른 티타늄의 표면특성 평가: 예비 연구)

  • Kim, Ae-Ra;Park, Ji-Yoon;Kim, Yeon;Jun, Sei-Won;Seo, Yoon-Jeong;Park, Sang-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.3
    • /
    • pp.167-174
    • /
    • 2013
  • Purpose: This study was conducted to evaluate the roughness and surface alternations of three differently blasted titanium discs treated by $Nd:YVO_4$ Laser irradiation in different conditions. Materials and methods: Thirty commercially pure titanium discs were prepared and divided into three groups. Each group was consisted of 10 samples and blasted by $ZrO_2$ (zirconium dioxide), $Al_2O_3$ (aluminum oxide), and RBM (resorbable blasted media). All the samples were degreased by ultrasonic cleaner afterward. Nine different conditions were established by changing scanning speed (100, 300, 500 mm/s) and repetition rate (5, 15, 35 kHz) of $Nd:YVO_4$ Laser (Laser Pro D-20, Laserval $Korea^{(R)}$, Seoul, South Korea). After laser irradiation, a scanning electron microscope, X-ray diffraction analysis, energy dispersive X-ray spectroscopic analysis, and surface roughness analysis were used to assess the roughness and surface alternations of the samples. Results: According to a scanning electron microscope (SEM), titanium discs treated with laser irradiation showed characteristic patterns in contrast to the control which showed irregular patterns. According to the X-ray diffraction analysis, only $Al_2O_3$ group showed its own peak. The oxidation tendency and surface roughness of titanium were similar to the control in the energy dispersive X-ray spectroscopic analysis. The surface roughness was inversely proportional to the scanning speed, whereas proportional to the repetition rate of $Nd:YVO_4$. Conclusion: The surface microstructures and roughness of the test discs were modified by the radiation of $Nd:YVO_4$ laser. Therefore, laser irradiation could be considered one of the methods to modify implant surfaces for the enhancement of osseointegration.

Effect of a Pulsed Nd:YAG laser irradiation on human gingival tissues (파동형 Nd:YAG 레이저조사가 인체 치은조직에 미치는 영향)

  • Kang, Kyung-Dong;Kim, Chun-Suk;Kim, Hyung-Soo;Kim, Hyun-Seop;Kim, Byung-Ock;Han, Kyung-Yoon
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.4
    • /
    • pp.989-1002
    • /
    • 1996
  • The purpose of this study was to determine the effect of a pulsed Nd:YAG laser irradiation on human gingival tissues. The patients, who were planned to be treated by clinical crown lengthening procedure and gingivectomy, were selected. All the patients received oral hygiene instruction, scaling and root planing at preoperation. The crest of gingival tissue on upper and lower anterior teeth was irradiated by a pulsed Nd:YAG laser(El. EN. EN060, Italy) with a fiber optic of 300 m in contact mode for 20 seconds. Gingival tissues were divided into 4 groups according to the laser power of 1.0W(10Hz, 100mJ), 2.0W(20Hz, 100mJ), 3.0W(30Hz, 100mJ) and 4.0W(40Hz, 100mJ). Immediately after the laser irradiation, the specimens were excised, fixed 10% neutral formalin, sectioned $4-6{\mu}m$ thick, stained by Hematoxylin-Eosin and Periodic Acid Schiff stain and observed under light microscope. The removed tissue depth and the coagulated layer depth due to a laser irradiation by a laser irradiation were measured on the microphotographs. The difference of measurements according to the different laser power was statistical1y analyzed by Kruskal Wallis Test with SAS program. The results were as follows : 1. In histologic findings of irradiated gingival tissues; a. In the irradiated gingival specimen with 1.0W laser power, some vesicles were observed in limited superficial layer of gingival epithelium. b. In the irradiated gingival specimen with 2.0W and 3.0W laser power, the epithelium was almost removed except for the traces of viable basal cell remnants at ret peg, and coagulation necrosis related with the thermal effect of laser was noted. c. In the irradiated gingival specimen with 4.0W laser power, complete removal of epithelium, partial removal of underlying connective tissue, and the coagulation necrosis of subjacent gingival tissue were shown. 2. The removed tissue depth was deeper in the irradiated specimens with higher power. There was a statistical significance in the difference of removed tissue depth between 1.0W group ($44.54{\pm}6.99um$) and 3.0W group ($99.75{\pm}6.64{\mu}m$), and between 1.0W group($44.54{\pm}6.99{\mu}m$) and 4.0W group($111.36{\pm}4.50{\mu}m$), and between 2.0W group($98.01{\pm}4.53{\mu}m$) and 4.0W group($111.36{\pm}4.50{\mu}m$)(P<0.05). 3. The coagulated layer depth was deeper in the irradiated specimens with higher power. There was a statistical significance in the difference of coagulated layer depth between 1.0W group($31.82{\pm}8.99{\mu}m$) and 3.0W group($55.99{\pm}20.94{\mu}m$), and between 1.0W group($31.82{\pm}8.99{\mu}m$) and 4.0W group($83.68{\pm}10.34{\mu}m$)(P<0.05). From this study, the results demonstrated that the effects of a pulsed Nd:YAG laser irradiation on gingival tissues seemed to depend on the laser power and that the irradiation with high power could be harmful to adjacent healthy tissue.

  • PDF

The bactericidal effect of an atmospheric-pressure plasma jet on Porphyromonas gingivalis biofilms on sandblasted and acid-etched titanium discs

  • Lee, Ji-Yoon;Kim, Kyoung-Hwa;Park, Shin-Young;Yoon, Sung-Young;Kim, Gon-Ho;Lee, Yong-Moo;Rhyu, In-Chul;Seol, Yang-Jo
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.5
    • /
    • pp.319-329
    • /
    • 2019
  • Purpose: Direct application of atmospheric-pressure plasma jets (APPJs) has been established as an effective method of microbial decontamination. This study aimed to investigate the bactericidal effect of direct application of an APPJ using helium gas (He-APPJ) on Porphyromonas gingivalis biofilms on sandblasted and acid-etched (SLA) titanium discs. Methods: On the SLA discs covered by P. gingivalis biofilms, an APPJ with helium (He) as a discharge gas was applied at 3 different time intervals (0, 3, and 5 minutes). To evaluate the effect of the plasma itself, the He gas-only group was used as the control group. The bactericidal effect of the He-APPJ was determined by the number of colony-forming units. Bacterial viability was observed by confocal laser scanning microscopy (CLSM), and bacterial morphology was examined by scanning electron microscopy (SEM). Results: As the plasma treatment time increased, the amount of P. gingivalis decreased, and the difference was statistically significant. In the SEM images, compared to the control group, the bacterial biofilm structure on SLA discs treated by the He-APPJ for more than 3 minutes was destroyed. In addition, the CLSM images showed consistent results. Even in sites distant from the area of direct He-APPJ exposure, decontamination effects were observed in both SEM and CLSM images. Conclusions: He-APPJ application was effective in removing P. gingivalis biofilm on SLA titanium discs in an in vitro experiment.

Antimicrobial effect of infrared diode laser utilizing indocyanine green against Staphylococcus aureus biofilm on titanium surface (티타늄 표면에 형성한 Staphylococcus aureus 바이오필름에 대한 인도시아닌 그린을 활용한 광역학치료의 항미생물 효과)

  • Seung Gi Kim;Si-Young Lee;Jong-Bin Lee;Heung-Sik Um;Jae-Kwan Lee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.40 no.2
    • /
    • pp.55-63
    • /
    • 2024
  • Purpose: This study aimed to assess the antimicrobial efficacy of an 810-nm infrared diode laser with indocyanine green (ICG) against Staphylococcus aureus on sandblasted, large grit, and acid-etched (SLA) titanium surfaces, comparing its effectiveness with alternative chemical decontamination modalities. Materials and Methods: Biofilms of S. aureus ATCC 25923 were cultured on SLA titanium disks for 48 hours. The biofilms were divided into five treatment groups: control, chlorhexidine gluconate (CHX), tetracycline (TC), ICG, and 810-nm infrared diode laser with ICG (ICG-PDT). After treatment, colony-forming units were quantified to assess surviving bacteria, and viability was confirmed through confocal laser-scanning microscope (CLSM) imaging. Results: All treated groups exhibited a statistically significant reduction in S. aureus (P < 0.05), with notable efficacy in the CHX, TC, and ICG-PDT groups (P < 0.01). While no statistical difference was observed between TC and CHX, the ICG-PDT group demonstrated superior bacterial reduction. CLSM images revealed a higher proportion of dead bacteria stained in red within the ICG-PDT groups. Conclusion: Within the limitations, ICG-PDT effectively reduced S. aureus biofilms on SLA titanium surfaces. Further investigations into alternative decontamination methods and the clinical impact of ICG-PDT on peri-implant diseases are warranted.