DOI QR코드

DOI QR Code

Evaluation of titanium surface properties by $Nd:YVO_4$ laser irradiation: pilot study

$Nd:YVO_4$ 레이저 조사에 따른 티타늄의 표면특성 평가: 예비 연구

  • Kim, Ae-Ra (Department of Prosthodontics, School of Dentistry, Chonnam National University) ;
  • Park, Ji-Yoon (Department of Dental Science, School of Dentistry, Chonnam National University) ;
  • Kim, Yeon (Department of Dental Science, School of Dentistry, Chonnam National University) ;
  • Jun, Sei-Won (Department of Dental Science, School of Dentistry, Chonnam National University) ;
  • Seo, Yoon-Jeong (Department of Prosthodontics, School of Dentistry, Chonnam National University) ;
  • Park, Sang-Won (Department of Prosthodontics, School of Dentistry, Chonnam National University)
  • 김애라 (전남대학교 치의학전문대학원 보철학교실) ;
  • 박지윤 (전남대학교 치의학전문대학원 치의학과) ;
  • 김연 (전남대학교 치의학전문대학원 치의학과) ;
  • 전세원 (전남대학교 치의학전문대학원 치의학과) ;
  • 서윤정 (전남대학교 치의학전문대학원 보철학교실) ;
  • 박상원 (전남대학교 치의학전문대학원 보철학교실)
  • Received : 2013.06.07
  • Accepted : 2013.07.04
  • Published : 2013.07.31

Abstract

Purpose: This study was conducted to evaluate the roughness and surface alternations of three differently blasted titanium discs treated by $Nd:YVO_4$ Laser irradiation in different conditions. Materials and methods: Thirty commercially pure titanium discs were prepared and divided into three groups. Each group was consisted of 10 samples and blasted by $ZrO_2$ (zirconium dioxide), $Al_2O_3$ (aluminum oxide), and RBM (resorbable blasted media). All the samples were degreased by ultrasonic cleaner afterward. Nine different conditions were established by changing scanning speed (100, 300, 500 mm/s) and repetition rate (5, 15, 35 kHz) of $Nd:YVO_4$ Laser (Laser Pro D-20, Laserval $Korea^{(R)}$, Seoul, South Korea). After laser irradiation, a scanning electron microscope, X-ray diffraction analysis, energy dispersive X-ray spectroscopic analysis, and surface roughness analysis were used to assess the roughness and surface alternations of the samples. Results: According to a scanning electron microscope (SEM), titanium discs treated with laser irradiation showed characteristic patterns in contrast to the control which showed irregular patterns. According to the X-ray diffraction analysis, only $Al_2O_3$ group showed its own peak. The oxidation tendency and surface roughness of titanium were similar to the control in the energy dispersive X-ray spectroscopic analysis. The surface roughness was inversely proportional to the scanning speed, whereas proportional to the repetition rate of $Nd:YVO_4$. Conclusion: The surface microstructures and roughness of the test discs were modified by the radiation of $Nd:YVO_4$ laser. Therefore, laser irradiation could be considered one of the methods to modify implant surfaces for the enhancement of osseointegration.

연구 목적: 본 연구는 서로 다른 세가지 블라스팅 처리를 한 티타늄 디스크에$Nd:YVO_4$ 레이저 조사 조건을 달리한 후 조사하여 티타늄의 표면 거칠기 및 표면 변화를 관찰하기 위함이다. 연구 재료 및 방법: 디스크 형태의 상용 순수 티타늄 시편을 30개 준비하여 시료 표면을 각각 10개씩 $ZrO_2$ (zirconium dioxide), $Al_2O_3$ (aluminium oxide), RBM (resorbable blasted media)으로 블라스팅(blasting)하고 초음파 세척하였다. $Nd:YVO_4$ 레이저(Laser Pro D-20, Laserval $Korea^{(R)}$, Seoul, South Korea)에서 주사속도(100, 300, 500 mm/s)와 시간당 진동량(반복률) (5, 15, 35 kHz)을 다르게 하여 9가지 조건을 설정하였다. 레이저 조사 후 주사전자현미경, X-선 회절 분석 및 에너지 분산X선 분광분석, 표면 거칠기 분석을 통해 각 시편을 평가하고 분석하였다. 결과: 주사전자현미경의 결과 레이저 조사를 시행하지 않은 티타늄 표면은 방향성이 없는 불규칙한 형상을 보였고 레이저 조사를 처리한 시편은 특징적인 형태가 관찰되었다. X-선회절분석결과$ZrO_2$, RBM 의 고유피크는 관찰되지 않았으나 $Al_2O_3$분사한 군에서는 알루미나의 고유 피크가 관찰되었다. 에너지 분산X선 분광분석을 통해 관찰한 티타늄의 산화도 경향성과 표면 거칠기는 유사하였다. 표면 거칠기는 주사속도와 반복률에 따른 차이를 보였다(P<.05). 결론: 레이저 조사 조건에 따라 티타늄 디스크의 미세구조와 표면 거칠기가 변화되었다. 레이저 조사는 골유착을 증진시키기 위한 임플란트 표면을 변화시키는 방법중의 하나로 여길 수 있을 것이다.

Keywords

References

  1. Albrektsson T, Lekholm U. Osseointegration: current state of the art. Dent Clin North Am 1989;33:537-54.
  2. Wennerberg A, Albrektsson T. Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res 2009;20:172-84. https://doi.org/10.1111/j.1600-0501.2009.01775.x
  3. Mendonca G, Mendonca DB, Aragão FJ, Cooper LF. Advancing dental implant surface technology-from micron- to nanotopography. Biomaterials 2008;29:3822-35. https://doi.org/10.1016/j.biomaterials.2008.05.012
  4. Marchi J, Delfino CS, Bressiani JC, Bressiani AHA, Marques MM. Cell proliferation of human fibroblasts on alumina and hydroxyapatite- based ceramics with different surface treatments. Int J Appl Ceram Technol 2010;7:139-47. https://doi.org/10.1111/j.1744-7402.2009.02388.x
  5. Le Guehennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 2007;23:844-54. https://doi.org/10.1016/j.dental.2006.06.025
  6. Elias CN, Oshida Y, Lima JH, Muller CA. Relationship between surface properties (roughness, wettability and morphology) of titanium and dental implant removal torque. J Mech Behav Biomed Mater 2008;1:234-42. https://doi.org/10.1016/j.jmbbm.2007.12.002
  7. Wennerberg A, Albrektsson T, Andersson B, Krol JJ. A histomorphometric and removal torque study of screw-shaped titanium implants with three different surface topographies. Clin Oral Implants Res 1995;6:24-30. https://doi.org/10.1034/j.1600-0501.1995.060103.x
  8. Vasanthan A, Kim H, Drukteinis S, Lacefield W. Implant surface modification using laser guided coatings: in vitro comparison of mechanical properties. J Prosthodont 2008;17:357-64. https://doi.org/10.1111/j.1532-849X.2008.00307.x
  9. Romanos GE, Everts H, Nentwig GH. Effects of diode and Nd:YAG laser irradiation on titanium discs: a scanning electron microscope examination. J Periodontol 2000;71:810-5. https://doi.org/10.1902/jop.2000.71.5.810
  10. Stubinger S, Etter C, Miskiewicz M, Homann F, Saldamli B, Wieland M, Sader R. Surface alterations of polished and sandblasted and acid-etched titanium implants after Er:YAG, carbon dioxide, and diode laser irradiation. Int J Oral Maxillofac Implants 2010;25:104-11.
  11. Bereznai M, Pelsoczi I, Toth Z, TurzoK, Radnai M, Bor Z, Fazekas A. Surface modifications induced by ns and sub-ps excimer laser pulses on titanium implant material. Biomaterials 2003;24:4197- https://doi.org/10.1016/S0142-9612(03)00318-1
  12. Heinrich A, Dengler K, Koerner T, Haczek C, Deppe H, Stritzker B. Laser-modified titanium implants for improved cell adhesion. Lasers Med Sci 2008;23:55-8. https://doi.org/10.1016/j.mla.2007.12.002
  13. Braga Francisco JC, Marques Rodrigo FC, Filho Edson de A, Guastaldi Antonio C. Surface modification of Ti dental implants by Nd:YVO4 laser irradiation. Appl Surf Sci 2007;253: 9203-8. https://doi.org/10.1016/j.apsusc.2007.05.048
  14. Taira T, Mukai A, Nozawa Y, Kobayashi T. Single-mode oscillation of laser-diode-pumped Nd:YVO4 microchip lasers. Opt Lett 1991;16:1955-7. https://doi.org/10.1364/OL.16.001955
  15. Block CM, Mayo JA, Evans GH. Effects of the Nd:YAG dental laser on plasma-sprayed and hydroxyapatite-coated titanium dental implants: surface alteration and attempted sterilization. Int J Oral Maxillofac Implants 1992;7:441-9.
  16. Fields RA, Birnbaum M, Fincher CL. Highly efficient Nd:YVO4 diode-laser end-pumped laser. Appl Phys Lett 1987;51:1885. https://doi.org/10.1063/1.98500
  17. Johansson CB, Albrektsson T. A removal torque and histomorphometric study of commercially pure niobium and titanium implants in rabbit bone. Clin Oral Implants Res 1991;2:24- https://doi.org/10.1034/j.1600-0501.1991.020103.x
  18. Gottlander M, Albrektsson T. Histomorphometric analyses of hydroxyapatite- coated and uncoated titanium implants. The importance of the implant design. Clin Oral Implants Res 1992;3:71-6. https://doi.org/10.1034/j.1600-0501.1992.030204.x
  19. Cooper LF. A role for surface topography in creating and maintaining bone at titanium endosseous implants. J Prosthet Dent 2000;84:522-34. https://doi.org/10.1067/mpr.2000.111966
  20. Ronold HJ, Lyngstadaas SP, Ellingsen JE. Analysing the optimal value for titanium implant roughness in bone attachment using a tensile test. Biomaterials 2003;24:4559-64. https://doi.org/10.1016/S0142-9612(03)00256-4
  21. Kreisler M, Gotz H, Duschner H. Effect of Nd:YAG, Ho:YAG, Er:YAG, CO2, and GaAIAs laser irradiation on surface properties of endosseous dental implants. Int J Oral Maxillofac Implants 2002;17:202-11.
  22. Chu RT, Watanabe L, White JM, Marshal GW, Marshal SJ, Hutton JE. Temperature rise and surface modification of lased titanium cylinders. J Dent Res 1992;71:144 (Abstract 312).
  23. Peto G, Karacs A, Paszti Z, Guczi L, Divinyi T, Joob A. Surface treatment of screw shaped titanium dental implants by high intensity laser pulses. Appl Surf Sci 2002;186:7-13. https://doi.org/10.1016/S0169-4332(01)00769-3