DOI QR코드

DOI QR Code

Antimicrobial effect of infrared diode laser utilizing indocyanine green against Staphylococcus aureus biofilm on titanium surface

티타늄 표면에 형성한 Staphylococcus aureus 바이오필름에 대한 인도시아닌 그린을 활용한 광역학치료의 항미생물 효과

  • Seung Gi Kim (Department of Periodontology and Research Institute for Oral Sciences, Gangneung-Wonju National University College of Dentistry) ;
  • Si-Young Lee (Department of Oral Microbiology and Research Institute for Oral Sciences, Gangneung-Wonju National University College of Dentistry) ;
  • Jong-Bin Lee (Department of Periodontology and Research Institute for Oral Sciences, Gangneung-Wonju National University College of Dentistry) ;
  • Heung-Sik Um (Department of Periodontology and Research Institute for Oral Sciences, Gangneung-Wonju National University College of Dentistry) ;
  • Jae-Kwan Lee (Department of Periodontology and Research Institute for Oral Sciences, Gangneung-Wonju National University College of Dentistry)
  • 김승기 (강릉원주대학교 치과대학 치주과학교실 및 구강과학연구소) ;
  • 이시영 (강릉원주대학교 치과대학 미생물학교실 및 구강과학연구소) ;
  • 이종빈 (강릉원주대학교 치과대학 치주과학교실 및 구강과학연구소) ;
  • 엄흥식 (강릉원주대학교 치과대학 치주과학교실 및 구강과학연구소) ;
  • 이재관 (강릉원주대학교 치과대학 치주과학교실 및 구강과학연구소)
  • Received : 2024.02.13
  • Accepted : 2024.03.18
  • Published : 2024.05.31

Abstract

Purpose: This study aimed to assess the antimicrobial efficacy of an 810-nm infrared diode laser with indocyanine green (ICG) against Staphylococcus aureus on sandblasted, large grit, and acid-etched (SLA) titanium surfaces, comparing its effectiveness with alternative chemical decontamination modalities. Materials and Methods: Biofilms of S. aureus ATCC 25923 were cultured on SLA titanium disks for 48 hours. The biofilms were divided into five treatment groups: control, chlorhexidine gluconate (CHX), tetracycline (TC), ICG, and 810-nm infrared diode laser with ICG (ICG-PDT). After treatment, colony-forming units were quantified to assess surviving bacteria, and viability was confirmed through confocal laser-scanning microscope (CLSM) imaging. Results: All treated groups exhibited a statistically significant reduction in S. aureus (P < 0.05), with notable efficacy in the CHX, TC, and ICG-PDT groups (P < 0.01). While no statistical difference was observed between TC and CHX, the ICG-PDT group demonstrated superior bacterial reduction. CLSM images revealed a higher proportion of dead bacteria stained in red within the ICG-PDT groups. Conclusion: Within the limitations, ICG-PDT effectively reduced S. aureus biofilms on SLA titanium surfaces. Further investigations into alternative decontamination methods and the clinical impact of ICG-PDT on peri-implant diseases are warranted.

목적: 이 연구의 목적은 거친 티타늄 표면에 형성된 Staphylococcus aureus 바이오필름에 대해 인도시아닌 그린을 활용한 광역학치료(photodynamic therapy; PDT)의 항미생물 효과를 평가하고, 이를 임상에서 널리 사용되는 다른 화학 처치 방법과 비교하는 것이다. 연구 재료 및 방법: 멸균된 거친 표면 티타늄 디스크에 S. aureus ATCC 25923을 접종한 후 48시간 동안 배양하여 바이오필름을 형성하였다. 실험은 대조군, 클로르헥시딘군(CHX), 테트라싸이클린군(TC), 인도시아닌 그린군(ICG), 인도시아닌 그린을 활용한 광역학치료군(ICG-PDT)으로 구분하여 진행하였다. 군에 따른 처리 후 세균을 배양하여 세균 수(colony forming unit; CFU)를 계산하고, 바이오필름을 공초점 현미경을 통해 분석하였다. 통계 분석은 CFU값을 로그값으로 변환한 후 분산 분석을 시행하였다. 결과: 모든 실험군은 대조군과 비교하여 유의한 항미생물 효과를 나타냈으며(P < 0.05), 특히 CHX, TC, PDT 군에서 90% 이상의 유의한 효과를 보였다(P < 0.01). CHX 군은 TC, PDT 군과 유의한 차이를 보이지 않았으나(P > 0.05), PDT 군은 TC보다 유의하게 효과적이었다(P = 0.035). 공초점현미경 상에서 PDT 군에서 사균의 비율이 더 높게 관찰되었다. 결론: 이번 연구를 통해 인도시아닌 그린을 활용한 광역학치료가 SLA 티타늄 표면에 형성된 S. aureus 바이오필름 제거에 있어 효과적임을 확인하였다.

Keywords

References

  1. Lee CT, Huang YW, Zhu L, Weltman R. Prevalences of peri-implantitis and peri-implant mucositis: systematic review and meta-analysis. J Dent 2017;62:1-12.
  2. Lindhe J, Meyle J. Peri-implant diseases: Consensus Report of the Sixth European Workshop on Periodontology. J Clin Periodontol 2008;35(8 Suppl):282-5.
  3. Giffi R, Pietropaoli D, Mancini L, Tarallo F, Sahrmann P, Marchetti E. The efficacy of different implant surface decontamination methods using spectrophotometric analysis: an in vitro study. J Periodontal Implant Sci 2023;53:295-305.
  4. Claffey N, Clarke E, Polyzois I, Renvert S. Surgical treatment of peri-implantitis. J Clin Periodontol 2008;35(8 Suppl):316-32.
  5. Sculean A, Deppe H, Miron R, Schwarz F, Romanos G, Cosgarea R. Effectiveness of Photodynamic Therapy in the Treatment of Periodontal and PeriImplant Diseases. Monogr Oral Sci 2021;29:133-43.
  6. Konopka K, Goslinski T. Photodynamic therapy in dentistry. J Dent Res 2007;86:694-707.
  7. Cho K, Lee SY, Chang BS, Um HS, Lee JK. The effect of photodynamic therapy on Aggregatibacter actinomycetemcomitans attached to surface-modified titanium. J Periodontal Implant Sci 2015;45:38-45.
  8. Shirata C, Kaneko J, Inagaki Y, Kokudo T, Sato M, Kiritani S, Akamatsu N, Arita J, Sakamoto Y, Hasegawa K, Kokudo N. Near-infrared photothermal/photodynamic therapy with indocyanine green induces apoptosis of hepatocellular carcinoma cells through oxidative stress. Sci Rep 2017;7:13958.
  9. Boehm TK, Ciancio SG. Diode laser activated indocyanine green selectively kills bacteria. J Int Acad Periodontol 2011;13:58-63.
  10. Monzavi A, Chinipardaz Z, Mousavi M, Fekrazad R, Moslemi N, Azaripour A, Bagherpasand O, Chiniforush N. Antimicrobial photodynamic therapy using diode laser activated indocyanine green as an adjunct in the treatment of chronic periodontitis: A randomized clinical trial. Photodiagnosis Photodyn Ther 2016;14:93-7.
  11. Bashir NZ, Singh HA, Virdee SS. Indocyanine green-mediated antimicrobial photodynamic therapy as an adjunct to periodontal therapy: a systematic review and meta-analysis. Clin Oral Investig 2021;25:5699-710.
  12. Subramani K, Jung RE, Molenberg A, Hammerle CH. Biofilm on dental implants: a review of the literature. Int J Oral Maxillofac Implants 2009;24:616-26.
  13. Mombelli A, Decaillet F. The characteristics of biofilms in peri-implant disease. J Clin Periodontol 2011;38 Suppl 11:203-13.
  14. Wu-Yuan CD, Eganhouse KJ, Keller JC, Walters KS. Oral bacterial attachment to titanium surfaces: a scanning electron microscopy study. J Oral Implantol 1995;21:207-13.
  15. Roehling S, Astasov-Frauenhoffer M, Hauser-Gerspach I, Braissant O, Woelfler H, Waltimo T, Kniha H, Gahlert M. In Vitro Biofilm Formation on Titanium and Zirconia Implant Surfaces. J Periodontol 2017;88:298-307.
  16. Almaguer-Flores A, Olivares-Navarrete R, Wieland M, Ximenez-Fyvie LA, Schwartz Z, Boyan BD. Influence of topography and hydrophilicity on initial oral biofilm formation on microstructured titanium surfaces in vitro. Clin Oral Implants Res 2012;23:301-7.
  17. Christensen GD, Baddour LM, Hasty DL, Lowrance JH, Simpson WA. Microbial and foreign body factors in the pathogenesis of medical device infections. In: Bisno AL, Waldvogel FA, editors. Infections associated with indwelling medical devices. Washington; American Society for Microbiology; 1989. p. 27-59.
  18. Lister JL, Horswill AR. Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Front Cell Infect Microbiol 2014;4:178.
  19. Kronstrom M, Svensson B, Erickson E, Houston L, Braham P, Persson GR. Humoral immunity host factors in subjects with failing or successful titanium dental implants. J Clin Periodontol 2000;27:875-82.
  20. Persson GR, Renvert S. Cluster of bacteria associated with peri-implantitis. Clin Implant Dent Relat Res 2014;16:783-93.
  21. Salvi GE, Furst MM, Lang NP, Persson GR. One-year bacterial colonization patterns of Staphylococcus aureus and other bacteria at implants and adjacent teeth. Clin Oral Implants Res 2008;19:242-8.
  22. Topaloglu N, Gulsoy M, Yuksel S. Antimicrobial photodynamic therapy of resistant bacterial strains by indocyanine green and 809-nm diode laser. Photomed Laser Surg 2013;31:155-62.
  23. Wong TW, Liao SZ, Ko WC, Wu CJ, Wu SB, Chuang YC, Huang IH. Indocyanine Green - Mediated Photodynamic Therapy Reduces MethicillinResistant Staphylococcus aureus Drug Resistance. J Clin Med 2019;8:411.
  24. Park GH, Lee SY, Lee JB, Chang BS, Lee JK, Um HS. Effect of photodynamic therapy according to differences in photosensitizers on Staphylococcus aureus biofilm on titanium. Photodiagnosis Photodyn Ther 2023;41:103317.
  25. Beytollahi L, Pourhajibagher M, Chiniforush N, Ghorbanzadeh R, Raoofian R, Pourakbari B, Bahador A. The efficacy of photodynamic and photothermal therapy on biofilm formation of Streptococcus mutans: An in vitro study. Photodiagnosis Photodyn Ther 2017;17:56-60.
  26. Golmohamadpour A, Bahramian B, Khoobi M, Pourhajibagher M, Barikani HR, Bahador A. Antimicrobial photodynamic therapy assessment of three indocyanine green-loaded metal-organic frameworks against Enterococcus faecalis. Photodiagnosis Photodyn Ther 2018;23:331-8.
  27. Fekrazad R, Karamifar K, Bahador A. Comparison of antibacterial effect of photodynamic therapy using indocyanine green (Emundo) with 2% metronidazole and 2% chlorhexidine gel on Porphyromonas gingivalis (an in-vitro study). Photodiagnosis Photodyn Ther 2016;15:28-33.
  28. Shim SH, Lee SY, Lee JB, Chang BS, Lee JK, Um HS. Antimicrobial photothermal therapy using diode laser with indocyanine green on Streptococcus gordonii biofilm attached to zirconia surface. Photodiagnosis Photodyn Ther 2022;38:102767.
  29. Burchard T, Karygianni L, Hellwig E, Follo M, Wrbas T, Wittmer A, Vach K, Al-Ahmad A. Inactivation of oral biofilms using visible light and water-filtered infrared A radiation and indocyanine green. Future Med Chem 2019;11:1721-39.
  30. Hopp M, Biffar R. Photodynamic therapies - blue versus green. Laser 2013;1:10-25.
  31. Albrektsson T, Wennerberg A. On osseointegration in relation to implant surfaces. Clin Implant Dent Relat Res 2019;21 Suppl 1:4-7.
  32. Lin HY, Liu Y, Wismeijer D, Crielaard W, Deng DM. Effects of oral implant surface roughness on bacterial biofilm formation and treatment efficacy. Int J Oral Maxillofac Implants 2013;28:1226-31.
  33. Sanz-Martin I, Paeng K, Park H, Cha JK, Jung UW, Sanz M. Significance of implant design on the efficacy of different peri-implantitis decontamination protocols. Clin Oral Investig 2021;25:3589-97.